Results 11  20
of
30
A verified model checker for the modal µcalculus in Coq
 In TACAS, volume 1384 of LNCS
, 1998
"... . We report on the formalisation and correctness proof of a model checker for the modal calculus in Coq's constructive type theory. Using Coq's extraction mechanism we obtain an executable Caml program, which is added as a safe decision procedure to the system. An example illustrates its applic ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
. We report on the formalisation and correctness proof of a model checker for the modal calculus in Coq's constructive type theory. Using Coq's extraction mechanism we obtain an executable Caml program, which is added as a safe decision procedure to the system. An example illustrates its application in combination with deduction. 1 Introduction There is an obvious advantage in combining theorem proving and model checking techniques for the verification of reactive systems. The expressiveness of the theorem prover's (often higherorder) logic can be used to accommodate a variety of program modelling and verification paradigms, so infinite state and parametrised designs can be verified. However, using a theorem prover is not transparent and may require a fair amount of expertise. On the other hand, model checking is transparent, but exponential in the number of concurrent components. Its application is thus limited to systems with small state spaces. A combination of the two techn...
Program Extraction in simplytyped Higher Order Logic
 Types for Proofs and Programs (TYPES 2002), LNCS 2646
, 2002
"... Based on a representation of primitive proof objects as  terms, which has been built into the theorem prover Isabelle recently, we propose a generic framework for program extraction. We show how this framework can be used to extract functional programs from proofs conducted in a constructive fr ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
Based on a representation of primitive proof objects as  terms, which has been built into the theorem prover Isabelle recently, we propose a generic framework for program extraction. We show how this framework can be used to extract functional programs from proofs conducted in a constructive fragment of the object logic Isabelle/HOL. A characteristic feature of our implementation of program extraction is that it produces both a program and a correctness proof. Since the extracted program is available as a function within the logic, its correctness proof can be checked automatically inside Isabelle.
On the strength of proofirrelevant type theories
 of Lecture Notes in Computer Science
, 2006
"... Vol. 4 (3:13) 2008, pp. 1–20 ..."
The Calculus of Constructions and Higher Order Logic
 In preparation
, 1992
"... The Calculus of Constructions (CC) ([Coquand 1985]) is a typed lambda calculus for higher order intuitionistic logic: proofs of the higher order logic are interpreted as lambda terms and formulas as types. It is also the union of Girard's system F! ([Girard 1972]), a higher order typed lambda calcul ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
The Calculus of Constructions (CC) ([Coquand 1985]) is a typed lambda calculus for higher order intuitionistic logic: proofs of the higher order logic are interpreted as lambda terms and formulas as types. It is also the union of Girard's system F! ([Girard 1972]), a higher order typed lambda calculus, and a first order dependent typed lambda calculus in the style of de Bruijn's Automath ([de Bruijn 1980]) or MartinLof's intuitionistic theory of types ([MartinLof 1984]). Using the impredicative coding of data types in F! , the Calculus of Constructions thus becomes a higher order language for the typing of functional programs. We shall introduce and try to explain CC by exploiting especially the first point of view, by introducing a typed lambda calculus that faithfully represent higher order predicate logic (so for this system the CurryHoward `formulasastypes isomorphism' is really an isomorphism.) Then we discuss some propositions that are provable in CC but not in the higher or...
Verifying programs in the Calculus of Inductive Constructions
, 1997
"... . This paper deals with a particular approach to the verification of functional programs. A specification of a program can be represented by a logical formula [Con86, NPS90]. In a constructive framework, developing a program then corresponds to proving this formula. Given a specification and a progr ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
. This paper deals with a particular approach to the verification of functional programs. A specification of a program can be represented by a logical formula [Con86, NPS90]. In a constructive framework, developing a program then corresponds to proving this formula. Given a specification and a program, we focus on reconstructing a proof of the specification whose algorithmic contents corresponds to the given program. The best we can hope is to generate proof obligations on atomic parts of the program corresponding to logical properties to be verified. First, this paper studies a weak extraction of a program from a proof that keeps track of intermediate specifications. From such a program, we prove the determinism of retrieving proof obligations. Then, heuristic methods are proposed for retrieving the proof from a natural program containing only partial annotations. Finally, the implementation of this method as a tactic of the Coq proof assistant is presented. 1. Introduction A large p...
Intensionality, Extensionality, and Proof Irrelevance in Modal Type Theory
 Pages 221–230 of: Symposium on Logic in Computer Science
, 2001
"... We develop a uniform type theory that integrates intensionality, extensionality, and proof irrelevance as judgmental concepts. Any object may be treated intensionally (subject only to #conversion), extensionally (subject also to ##conversion), or as irrelevant (equal to any other object at the sam ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
We develop a uniform type theory that integrates intensionality, extensionality, and proof irrelevance as judgmental concepts. Any object may be treated intensionally (subject only to #conversion), extensionally (subject also to ##conversion), or as irrelevant (equal to any other object at the same type), depending on where it occurs. Modal restrictions developed in prior work for simple types are generalized and employed to guarantee consistency between these views of objects. Potential applications are in logical frameworks, functional programming, and the foundations of firstorder modal logics.
The TkInter homepage. http://www.python.org/topics/tkinter
 Journal of Functional programming
, 2001
"... In this paper we present two type inference systems for detecting uselesscode in higherorder typed functional programs. Type inference can be performed in an efficient and complete way, by reducing it to the solution of a system of constraints. We also give a uselesscode elimination algorithm whi ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
In this paper we present two type inference systems for detecting uselesscode in higherorder typed functional programs. Type inference can be performed in an efficient and complete way, by reducing it to the solution of a system of constraints. We also give a uselesscode elimination algorithm which is based on a combined use of these type inference systems. The main application of the technique is the optimization of programs extracted from proofs in logical frameworks, but it could be used as well in the elimination of uselesscode determined by program transformations. Capsule Review Dead code is a subterm M of a term t = C[M] which does not matter to computation, that is, which may be replaced by any other term of the same type without altering the observational behaviour of the program: C[M] =obs C[N] for any N with the type of M. Deadcode may be replaced by dummy variable, or even completely removed, in order to optimize a program. The interest in deadcode by the authors started as a byproduct of a proof system which generated programs meeting a specification out of proofs that the specification is satisfiable.
The Coq Proof Assistant  Reference Manual Version 6.1
, 1997
"... : Coq is a proof assistant based on a higherorder logic allowing powerful definitions of functions. Coq V6.1 is available by anonymous ftp at ftp.inria.fr:/INRIA/Projects/coq/V6.1 and ftp.enslyon.fr:/pub/LIP/COQ/V6.1 Keywords: Coq, Proof Assistant, Formal Proofs, Calculus of Inductives Constru ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
: Coq is a proof assistant based on a higherorder logic allowing powerful definitions of functions. Coq V6.1 is available by anonymous ftp at ftp.inria.fr:/INRIA/Projects/coq/V6.1 and ftp.enslyon.fr:/pub/LIP/COQ/V6.1 Keywords: Coq, Proof Assistant, Formal Proofs, Calculus of Inductives Constructions (R'esum'e : tsvp) This research was partly supported by ESPRIT Basic Research Action "Types" and by the GDR "Programmation " cofinanced by MREPRC and CNRS. Unit'e de recherche INRIA Rocquencourt Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France) T'el'ephone : (33 1) 39 63 55 11  T'el'ecopie : (33 1) 39 63 53 30 Manuel de r'ef'erence du syst`eme Coq version V6.1 R'esum'e : Coq est un syst`eme permettant le d'eveloppement et la v'erification de preuves formelles dans une logique d'ordre sup'erieure incluant un riche langage de d'efinitions de fonctions. Ce document constitue le manuel de r'ef'erence de la version V6.1 qui est distribu 'ee par ftp ...
Coq in Coq
, 1997
"... . We formalize the definition and the metatheory of the Calculus of Constructions (CC) using the proof assistant Coq. In particular, we prove strong normalization and decidability of type inference. From the latter proof, we extract a certified Objective Caml program which performs type inference in ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
. We formalize the definition and the metatheory of the Calculus of Constructions (CC) using the proof assistant Coq. In particular, we prove strong normalization and decidability of type inference. From the latter proof, we extract a certified Objective Caml program which performs type inference in CC and use this code to build a smallscale certified proofchecker. Key words: Type Theory, proofchecker, Calculus of Constructions, metatheory, strong normalization proof, program extraction. 1. Introduction 1.1. Motivations This work can be described as the formal certification in Coq of a proofchecker for the Calculus of Constructions (CC). We view it as a first experimental step towards a certified kernel for the whole Coq system, of which CC is a significative fragment. In decidable type theories, a proofchecker is a program which verifies whether a given judgement (input) is valid or not (output). Valid meaning that there exists a derivation for that judgement following the in...
Phase distinctions in the compilation of Epigram
, 2005
"... Abstract. It is commonly believed that in dependently typed programming languages, the blurring of the distinction between types and values means that no type erasure is possible at runtime. In this paper, however, we propose an alternative phase distinction. Rather than distinguishing types and va ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract. It is commonly believed that in dependently typed programming languages, the blurring of the distinction between types and values means that no type erasure is possible at runtime. In this paper, however, we propose an alternative phase distinction. Rather than distinguishing types and values in the compilation of EPIGRAM, we distinguish compiletime and runtime evaluation, and show by a series of program transformations that values which are not required at runtime can be erased. 1