Results 1  10
of
20
Higher correlations of divisor sums related to primes, II: Variations of . . .
, 2007
"... We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the ..."
Abstract

Cited by 28 (6 self)
 Add to MetaCart
We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the third degree, and therefore the implications for the distribution of primes in short intervals, are the same as those we obtained (in the first paper with this title) by using the simpler approximation ΛR(n). However, when λR(n) is used, the error in the singular series approximation is often much smaller than what ΛR(n) allows. Assuming the Generalized Riemann Hypothesis (GRH) for Dirichlet Lfunctions, we obtain an Ω±result for the variation of the error term in the prime number theorem. Formerly, our knowledge under GRH was restricted to Ωresults for the absolute value of this variation. An important ingredient in the last part of this work is a recent result due to Montgomery and Soundararajan which makes it possible for us to dispense with a large error term in the evaluation of a certain singular series average. We believe that our results on the sums λR(n) and ΛR(n) can be employed in diverse problems concerning primes.
Yıldırım, Small gaps between primes or almost primes
"... Abstract. Let pn denote the nth prime. Goldston, Pintz, and Yıldırım recently proved that (pn+1 − pn) lim inf =0. n→ ∞ log pn We give an alternative proof of this result. We also prove some corresponding results for numbers with two prime factors. Let qn denote the nth number that is a product of ex ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
Abstract. Let pn denote the nth prime. Goldston, Pintz, and Yıldırım recently proved that (pn+1 − pn) lim inf =0. n→ ∞ log pn We give an alternative proof of this result. We also prove some corresponding results for numbers with two prime factors. Let qn denote the nth number that is a product of exactly two distinct primes. We prove that lim inf n→ ∞ (qn+1 − qn) ≤ 26. If an appropriate generalization of the ElliottHalberstam Conjecture is true, then the above bound can be improved to 6. 1.
Small gaps between primes
"... ABSTRACT. We use short divisor sums to approximate prime tuples and moments for primes in short intervals. By connecting these results to classical moment problems we are able to prove that, for any η> 0, a positive proportion of consecutive primes are within 1 + η times the average spacing betwe ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
ABSTRACT. We use short divisor sums to approximate prime tuples and moments for primes in short intervals. By connecting these results to classical moment problems we are able to prove that, for any η> 0, a positive proportion of consecutive primes are within 1 + η times the average spacing between primes. 4 1.
Primes in Tuples I
"... We introduce a method for showing that there exist prime numbers which are very close together. The method depends on the level of distribution of primes in arithmetic progressions. Assuming the ElliottHalberstam conjecture, we prove that there are infinitely often primes differing by 16 or less. E ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
We introduce a method for showing that there exist prime numbers which are very close together. The method depends on the level of distribution of primes in arithmetic progressions. Assuming the ElliottHalberstam conjecture, we prove that there are infinitely often primes differing by 16 or less. Even a much weaker conjecture implies that there are infinitely often primes a bounded distance apart. Unconditionally, we prove that there exist consecutive primes which are closer than any arbitrarily small multiple of the average spacing, that is, pn+1 − pn lim inf =0. n→ ∞ log pn We will quantify this result further in a later paper (see (1.9) below).
On the Size of the First Factor of the Class Number of a Cyclotomic Field
, 1990
"... We show that Kummer's conjectured asymptotic estimate for the size of the first factor of the class number of a cyclotomic field is untrue under the assumption of two wellknown and widely believed conjectures of analytic number theory. 1. Introduction In 1850 Kummer [13] published a review o ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
We show that Kummer's conjectured asymptotic estimate for the size of the first factor of the class number of a cyclotomic field is untrue under the assumption of two wellknown and widely believed conjectures of analytic number theory. 1. Introduction In 1850 Kummer [13] published a review of the main results that he and others had discovered about cyclotomic fields. In this elegant report he claimed that he had found an explicit "law for the asymptotic growth" of h 1 (p), the socalled first factor of the class number of the cyclotomic field, and would provide a proof elsewhere. This proof never appeared and we believe that Kummer's claim is incorrect. More precisely, let p denote any odd prime, let h(p) be the class number of the cyclotomic field Q(i p ) (where i p is a primitive pth root of unity) and h 2 (p) be the class number of the real subfield Q(i p +i \Gamma1 p ). Kummer proved that the ratio h 1 (p) = h(p)=h 2 (p) is an integer which he called the first factor of the ...
SMALL GAPS BETWEEN PRIMES II (PRELIMINARY)
"... Abstract. We examine an idea for approximating prime tuples. 1. Statement of results (Preliminary) In the present work we will prove the following result. Let pn denote the nth prime. Then (pn+1 − pn) (1.1) lim inf n→ ∞ log pn(log log pn) −1 < ∞. log log log log pn Further we show that supposing ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. We examine an idea for approximating prime tuples. 1. Statement of results (Preliminary) In the present work we will prove the following result. Let pn denote the nth prime. Then (pn+1 − pn) (1.1) lim inf n→ ∞ log pn(log log pn) −1 < ∞. log log log log pn Further we show that supposing the validity of the Bombieri–Vinogradov theorem up to Q ≤ Xϑ with any level ϑ>1/2 we have bounded differences between consecutive primes infinitely often: (1.2) lim inf n→ ∞ (pn+1 − pn) ≤ C(ϑ) with a constant C(ϑ) depending only on ϑ. If the Bombieri–Vinogradov theorem holds with a level ϑ>20/21, in particular if the Elliott–Halberstam conjecture holds, then we obtain (1.3) lim inf n→ ∞ (pn+1 − pn) ≤ 20, that is pn+1 − pn ≤ 20 for infinitely many n. Inequalities (1.2)–(1.3) will follow from the even stronger following result Theorem A. Suppose the Bombieri–Vinogradov theorem is true for Q ≤ Xϑ with some ϑ>1/2. Then there exists a constant C ′ (ϑ) such that any admissible ktuple contains at least two primes for any (1.4) k ≥ C ′ (ϑ) if ϑ>1/2, where C ′ (ϑ) is an explicitly calculable constant depending only on ϑ. Further we have at least two primes for (1.5) k =7 if ϑ>20/21. Remark. For the definition of admissibility see (2.2) below. We will show some more general results for the quantity (ν is a given positive integer) (1.6) Eν = lim inf n→∞ pn+ν − pn log pn
THE GOLDSTONPINTZYILDIRIM SIEVE AND MAXIMAL GAPS
, 811
"... One field of particular interest in Number Theory concerns the gaps between consecutive primes. Within the last few years, very important results have been achieved on how small these gaps can be. The strongest of these results were obtained by Dan Goldston, János Pintz and Cem Yalçın ..."
Abstract
 Add to MetaCart
One field of particular interest in Number Theory concerns the gaps between consecutive primes. Within the last few years, very important results have been achieved on how small these gaps can be. The strongest of these results were obtained by Dan Goldston, János Pintz and Cem Yalçın