Results 1 
3 of
3
Obstructions to uniformity, and arithmetic patterns in the primes, preprint
"... Abstract. In this expository article, we describe the recent approach, motivated by ergodic theory, towards detecting arithmetic patterns in the primes, and in particular establishing in [26] that the primes contain arbitrarily long arithmetic progressions. One of the driving philosophies is to iden ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
Abstract. In this expository article, we describe the recent approach, motivated by ergodic theory, towards detecting arithmetic patterns in the primes, and in particular establishing in [26] that the primes contain arbitrarily long arithmetic progressions. One of the driving philosophies is to identify precisely what the obstructions could be that prevent the primes (or any other set) from behaving “randomly”, and then either show that the obstructions do not actually occur, or else convert the obstructions into usable structural information on the primes. 1.
Generalising the HardyLittlewood method for primes
 In: Proceedings of the international congress of mathematicians
, 2007
"... Abstract. The HardyLittlewood method is a wellknown technique in analytic number theory. Among its spectacular applications are Vinogradov’s 1937 result that every sufficiently large odd number is a sum of three primes, and a related result of Chowla and Van der Corput giving an asymptotic for the ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
Abstract. The HardyLittlewood method is a wellknown technique in analytic number theory. Among its spectacular applications are Vinogradov’s 1937 result that every sufficiently large odd number is a sum of three primes, and a related result of Chowla and Van der Corput giving an asymptotic for the number of 3term progressions of primes, all less than N. This article surveys recent developments of the author and T. Tao, in which the HardyLittlewood method has been generalised to obtain, for example, an asymptotic for the number of 4term arithmetic progressions of primes less than N.