Results 1  10
of
333
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1304 (43 self)
 Add to MetaCart
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leaveoneout method and the VCdimension are given. Experimental results on optical character recognition problems demonstrate the good generalization obtained when compared with other learning algorithms.
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 314 (31 self)
 Add to MetaCart
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, som...
Improved heterogeneous distance functions
 Journal of Artificial Intelligence Research
, 1997
"... Instancebased learning techniques typically handle continuous and linear input values well, but often do not handle nominal input attributes appropriately. The Value Difference Metric (VDM) was designed to find reasonable distance values between nominal attribute values, but it largely ignores cont ..."
Abstract

Cited by 202 (10 self)
 Add to MetaCart
Instancebased learning techniques typically handle continuous and linear input values well, but often do not handle nominal input attributes appropriately. The Value Difference Metric (VDM) was designed to find reasonable distance values between nominal attribute values, but it largely ignores continuous attributes, requiring discretization to map continuous values into nominal values. This paper proposes three new heterogeneous distance functions, called the Heterogeneous Value Difference Metric (HVDM), the Interpolated Value Difference Metric (IVDM), and the Windowed Value Difference Metric (WVDM). These new distance functions are designed to handle applications with nominal attributes, continuous attributes, or both. In experiments on 48 applications the new distance metrics achieve higher classification accuracy on average than three previous distance functions on those datasets that have both nominal and continuous attributes.
A Theory of Networks for Approximation and Learning
 Laboratory, Massachusetts Institute of Technology
, 1989
"... Learning an inputoutput mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multidimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, t ..."
Abstract

Cited by 195 (24 self)
 Add to MetaCart
Learning an inputoutput mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multidimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nonlinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. Wedevelop a theoretical framework for approximation based on regularization techniques that leads to a class of threelayer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the wellknown Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods suchasParzen windows and potential functions and to several neural network algorithms, suchas Kanerva's associative memory,backpropagation and Kohonen's topology preserving map. They also haveaninteresting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.
A resourceallocating network for function interpolation
 Neural Computation
, 1991
"... We have created a network that allocates a new computational unit whenever an unusual pattern is presented to the network. This network forms compact representations, yet learns easily and rapidly. The network can be used at any time in the learning process and the learning patterns do not have to b ..."
Abstract

Cited by 170 (2 self)
 Add to MetaCart
We have created a network that allocates a new computational unit whenever an unusual pattern is presented to the network. This network forms compact representations, yet learns easily and rapidly. The network can be used at any time in the learning process and the learning patterns do not have to be repeated. The units in this network respond to only a local region of the space of input values. The network learns by allocating new units and adjusting the parameters of existing units. If the network performs poorly on a presented pattern, then a new unit is allocated which corrects the response to the presented pattern. If the network performs well on a presented pattern, then the network parameters are updated using standard LMS gradient descent. We have obtained good results with our resourceallocating network (RAN). For predicting the Mackey Glass chaotic time series, our network learns much faster than do those using backpropagation and uses a comparable number of synapses. 1
Neurofuzzy modeling and control
 IEEE Proceedings
, 1995
"... Abstract  Fundamental and advanced developments in neurofuzzy synergisms for modeling and control are reviewed. The essential part of neurofuzzy synergisms comes from a common framework called adaptive networks, which uni es both neural networks and fuzzy models. The fuzzy models under the framew ..."
Abstract

Cited by 150 (1 self)
 Add to MetaCart
Abstract  Fundamental and advanced developments in neurofuzzy synergisms for modeling and control are reviewed. The essential part of neurofuzzy synergisms comes from a common framework called adaptive networks, which uni es both neural networks and fuzzy models. The fuzzy models under the framework of adaptive networks is called ANFIS (AdaptiveNetworkbased Fuzzy Inference System), which possess certain advantages over neural networks. We introduce the design methods for ANFIS in both modeling and control applications. Current problems and future directions for neurofuzzy approaches are also addressed. KeywordsFuzzy logic, neural networks, fuzzy modeling, neurofuzzy modeling, neurofuzzy control, ANFIS. I.
Gaussian Networks for Direct Adaptive Control
 IEEE Transactions on Neural Networks
, 1991
"... A direct adaptive tracking control architecture is proposed and evaluated for a class of continuous time nonlinear dynamic systems for which an explicit linear parameterization of the uncertainty in the dynamics is either unknown or impossible. The architecture employs a network of gaussian radial ..."
Abstract

Cited by 132 (8 self)
 Add to MetaCart
A direct adaptive tracking control architecture is proposed and evaluated for a class of continuous time nonlinear dynamic systems for which an explicit linear parameterization of the uncertainty in the dynamics is either unknown or impossible. The architecture employs a network of gaussian radial basis functions to adaptively compensate for the plant nonlinearities. Under mild assumptions about the degree of smoothness exhibited by the nonlinear functions, the algorithm is proven to be globally stable, with tracking errors converging to a neighborhood of zero. A constructive procedure is detailed, which directly translates the assumed smoothness properties of the nonlinearities involved into a specification of the network required to represent the plant to a chosen degree of accuracy. A stable weight adjustment mechanism is then determined using Lyapunov theory. The network construction and performance of the resulting controller are illustrated through simulations with example syst...
T.R.: Reduction Techniques for Instancebased Learning Algorithm
 Machine Learning
"... Abstract. Instancebased learning algorithms are often faced with the problem of deciding which instances to store for use during generalization. Storing too many instances can result in large memory requirements and slow execution speed, and can cause an oversensitivity to noise. This paper has two ..."
Abstract

Cited by 131 (2 self)
 Add to MetaCart
Abstract. Instancebased learning algorithms are often faced with the problem of deciding which instances to store for use during generalization. Storing too many instances can result in large memory requirements and slow execution speed, and can cause an oversensitivity to noise. This paper has two main purposes. First, it provides a survey of existing algorithms used to reduce storage requirements in instancebased learning algorithms and other exemplarbased algorithms. Second, it proposes six additional reduction algorithms called DROP1–DROP5 and DEL (three of which were first described in Wilson & Martinez, 1997c, as RT1–RT3) that can be used to remove instances from the concept description. These algorithms and 10 algorithms from the survey are compared on 31 classification tasks. Of those algorithms that provide substantial storage reduction, the DROP algorithms have the highest average generalization accuracy in these experiments, especially in the presence of uniform class noise. Keywords: instancebased learning, nearest neighbor, instance reduction, pruning, classification
First and SecondOrder Methods for Learning: between Steepest Descent and Newton's Method
 Neural Computation
, 1992
"... Online first order backpropagation is sufficiently fast and effective for many largescale classification problems but for very high precision mappings, batch processing may be the method of choice. This paper reviews first and secondorder optimization methods for learning in feedforward neura ..."
Abstract

Cited by 128 (6 self)
 Add to MetaCart
Online first order backpropagation is sufficiently fast and effective for many largescale classification problems but for very high precision mappings, batch processing may be the method of choice. This paper reviews first and secondorder optimization methods for learning in feedforward neural networks. The viewpoint is that of optimization: many methods can be cast in the language of optimization techniques, allowing the transfer to neural nets of detailed results about computational complexity and safety procedures to ensure convergence and to avoid numerical problems. The review is not intended to deliver detailed prescriptions for the most appropriate methods in specific applications, but to illustrate the main characteristics of the different methods and their mutual relations.
Efficient BackProp
, 1998
"... . The convergence of backpropagation learning is analyzed so as to explain common phenomenon observed by practitioners. Many undesirable behaviors of backprop can be avoided with tricks that are rarely exposed in serious technical publications. This paper gives some of those tricks, and offers expl ..."
Abstract

Cited by 127 (25 self)
 Add to MetaCart
. The convergence of backpropagation learning is analyzed so as to explain common phenomenon observed by practitioners. Many undesirable behaviors of backprop can be avoided with tricks that are rarely exposed in serious technical publications. This paper gives some of those tricks, and offers explanations of why they work. Many authors have suggested that secondorder optimization methods are advantageous for neural net training. It is shown that most "classical" secondorder methods are impractical for large neural networks. A few methods are proposed that do not have these limitations. 1 Introduction Backpropagation is a very popular neural network learning algorithm because it is conceptually simple, computationally efficient, and because it often works. However, getting it to work well, and sometimes to work at all, can seem more of an art than a science. Designing and training a network using backprop requires making many seemingly arbitrary choices such as the number ...