Results 1 
5 of
5
Double Jump Inversions and Strong Minimal Covers in the Turing Degrees
, 2004
"... Decidability problems for (fragments of) the theory of the structure D of Turing degrees, form a wide and interesting class, much of which is yet unsolved. Lachlan showed in 1968 that the first order theory of D with the Turing reducibility relation is undecidable. Later results concerned the decida ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Decidability problems for (fragments of) the theory of the structure D of Turing degrees, form a wide and interesting class, much of which is yet unsolved. Lachlan showed in 1968 that the first order theory of D with the Turing reducibility relation is undecidable. Later results concerned the decidability (or undecidability) of fragments of this theory, and of other theories obtained by extending the language (e.g. with 0 or with the Turing jump operator). Proofs of these results often hinge on the ability to embed certain classes of structures (lattices, jumphierarchies, etc.) in certain ways, into the structure of Turing degrees. The first part of the dissertation presents two results which concern embeddings onto initial segments of D with known double jumps, in other words a double jump inversion of certain degree structures onto initial segments. These results may prove to be useful tools in uncovering decidability results for (fragments of) the theory of the Turing degrees in languages containing the double jump operator. The second part of the dissertation relates to the problem of characterizing the Turing degrees which have a strong minimal cover, an issue first raised by Spector in 1956. Ishmukhametov solved the problem for the recursively enumerable degrees, by showing that those which have a strong minimal cover are exactly the r.e. weakly recursive degrees. Here we show that this characterization fails outside the r.e. degrees, and also construct a minimal degree below 0 ′ which is not weakly recursive, thereby answering a question from Ishmukhametov’s paper.
Generalized high degrees have the complementation property
 Journal of Symbolic Logic
"... Abstract. We show that if d ∈ GH1 then D( ≤ d) has the complementation property, i.e. for all a < d there is some b < d such that a ∧ b = 0 and a ∨ b = d. §1. Introduction. A major theme in the investigation of the structure of the Turing degrees, (D, ≤T), has been the relationship between the order ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. We show that if d ∈ GH1 then D( ≤ d) has the complementation property, i.e. for all a < d there is some b < d such that a ∧ b = 0 and a ∨ b = d. §1. Introduction. A major theme in the investigation of the structure of the Turing degrees, (D, ≤T), has been the relationship between the order theoretic properties of a degree and its complexity of definition in arithmetic as expressed by the Turing jump operator which embodies a single step in the hierarchy of quantification. For example, there is a long history of results showing that 0 ′
The ∀∃ theory of D(≤, ∨, ′ ) is undecidable
 In Proceedings of Logic Colloquium
, 2003
"... We prove that the two quantifier theory of the Turing degrees with order, join and jump is undecidable. ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We prove that the two quantifier theory of the Turing degrees with order, join and jump is undecidable.
Probability measures and effective randomness
, 2007
"... Abstract. We study the question, “For which reals x does there exist a measure µ such that x is random relative to µ? ” We show that for every nonrecursive x, there is a measure which makes x random without concentrating on x. We give several conditions on x equivalent to there being continuous meas ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. We study the question, “For which reals x does there exist a measure µ such that x is random relative to µ? ” We show that for every nonrecursive x, there is a measure which makes x random without concentrating on x. We give several conditions on x equivalent to there being continuous measure which makes x random. We show that for all but countably many reals x these conditions apply, so there is a continuous measure which makes x random. There is a metamathematical aspect of this investigation. As one requires higher arithmetic levels in the degree of randomness, one must make use of more iterates of the power set of the continuum to show that for all but countably many x’s there is a continuous µ which makes x random to that degree. 1.