Results 1  10
of
28
Succinct indexable dictionaries with applications to encoding kary trees and multisets
 In Proceedings of the 13th Annual ACMSIAM Symposium on Discrete Algorithms (SODA
"... We consider the indexable dictionary problem, which consists of storing a set S ⊆ {0,...,m − 1} for some integer m, while supporting the operations of rank(x), which returns the number of elements in S that are less than x if x ∈ S, and −1 otherwise; and select(i) which returns the ith smallest ele ..."
Abstract

Cited by 191 (7 self)
 Add to MetaCart
We consider the indexable dictionary problem, which consists of storing a set S ⊆ {0,...,m − 1} for some integer m, while supporting the operations of rank(x), which returns the number of elements in S that are less than x if x ∈ S, and −1 otherwise; and select(i) which returns the ith smallest element in S. We give a data structure that supports both operations in O(1) time on the RAM model and requires B(n,m)+ o(n)+O(lg lg m) bits to store a set of size n, where B(n,m) = ⌈ lg ( m) ⌉ n is the minimum number of bits required to store any nelement subset from a universe of size m. Previous dictionaries taking this space only supported (yes/no) membership queries in O(1) time. In the cell probe model we can remove the O(lg lg m) additive term in the space bound, answering a question raised by Fich and Miltersen, and Pagh. We present extensions and applications of our indexable dictionary data structure, including: • an informationtheoretically optimal representation of a kary cardinal tree that supports standard operations in constant time, • a representation of a multiset of size n from {0,...,m − 1} in B(n,m+n) + o(n) bits that supports (appropriate generalizations of) rank and select operations in constant time, and • a representation of a sequence of n nonnegative integers summing up to m in B(n,m + n) + o(n) bits that supports prefix sum queries in constant time. 1
Exact and Approximate Distances in Graphs  a survey
 In ESA
, 2001
"... We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems. ..."
Abstract

Cited by 57 (0 self)
 Add to MetaCart
We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems.
Compressed suffix trees with full functionality
 Theory of Computing Systems
"... We introduce new data structures for compressed suffix trees whose size are linear in the text size. The size is measured in bits; thus they occupy only O(n log A) bits for a text of length n on an alphabet A. This is a remarkable improvement on current suffix trees which require O(n log n) bits. ..."
Abstract

Cited by 52 (5 self)
 Add to MetaCart
We introduce new data structures for compressed suffix trees whose size are linear in the text size. The size is measured in bits; thus they occupy only O(n log A) bits for a text of length n on an alphabet A. This is a remarkable improvement on current suffix trees which require O(n log n) bits. Though some components of suffix trees have been compressed, there is no linearsize data structure for suffix trees with full functionality such as computing suffix links, stringdepths and lowest common ancestors. The data structure proposed in this paper is the first one that has linear size and supports all operations efficiently. Any algorithm running on a suffix tree can also be executed on our compressed suffix trees with a slight slowdown of a factor of polylog(n). 1
Breaking a TimeandSpace Barrier in Constructing FullText Indices
"... Suffix trees and suffix arrays are the most prominent fulltext indices, and their construction algorithms are well studied. It has been open for a long time whether these indicescan be constructed in both o(n log n) time and o(n log n)bit working space, where n denotes the length of the text. Int ..."
Abstract

Cited by 50 (3 self)
 Add to MetaCart
Suffix trees and suffix arrays are the most prominent fulltext indices, and their construction algorithms are well studied. It has been open for a long time whether these indicescan be constructed in both o(n log n) time and o(n log n)bit working space, where n denotes the length of the text. Inthe literature, the fastest algorithm runs in O(n) time, whileit requires O(n log n)bit working space. On the other hand,the most spaceefficient algorithm requires O(n)bit working space while it runs in O(n log n) time. This paper breaks the longstanding timeandspace barrier under the unitcost word RAM. We give an algorithm for constructing the suffix array which takes O(n) time and O(n)bit working space, for texts with constantsize alphabets. Note that both the time and the space bounds are optimal. For constructing the suffix tree, our algorithm requires O(n logffl n) time and O(n)bit working space forany 0! ffl! 1. Apart from that, our algorithm can alsobe adopted to build other existing fulltext indices, such as
Cell probe complexity  a survey
 In 19th Conference on the Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 1999. Advances in Data Structures Workshop
"... The cell probe model is a general, combinatorial model of data structures. We give a survey of known results about the cell probe complexity of static and dynamic data structure problems, with an emphasis on techniques for proving lower bounds. 1 ..."
Abstract

Cited by 29 (0 self)
 Add to MetaCart
The cell probe model is a general, combinatorial model of data structures. We give a survey of known results about the cell probe complexity of static and dynamic data structure problems, with an emphasis on techniques for proving lower bounds. 1
Improved shortest paths on the word RAM
 in: 27th Colloquium on Automata, Languages and Programming (ICALP), in: Lecture Notes in Comput. Sci
"... Abstract. Thorup recently showed that singlesource shortestpaths problems in undirected networks with n vertices, m edges, and edge weights drawn from {0,...,2 w − 1} can be solved in O(n + m) time and space on a unitcost randomaccess machine with a word length of w bits. His algorithm works by ..."
Abstract

Cited by 24 (0 self)
 Add to MetaCart
Abstract. Thorup recently showed that singlesource shortestpaths problems in undirected networks with n vertices, m edges, and edge weights drawn from {0,...,2 w − 1} can be solved in O(n + m) time and space on a unitcost randomaccess machine with a word length of w bits. His algorithm works by traversing a socalled component tree. Two new related results are provided here. First, and most importantly, Thorup’s approach is generalized from undirected to directed networks. The resulting time bound, O(n + m log w), is the best deterministic linearspace bound known for sparse networks unless w is superpolynomial in log n. As an application, allpairs shortestpaths problems in directed networks with n vertices, m edges, and edge weights in {−2 w,...,2 w} can be solved in O(nm + n 2 log log n) time and O(n + m) space (not counting the output space). Second, it is shown that the component tree for an undirected network can be constructed in deterministic linear time and space with a simple algorithm, to be contrasted with a complicated and impractical solution suggested by Thorup. Another contribution of the present paper is a greatly simplified view of the principles underlying algorithms based on component trees. 1
Faster Deterministic Dictionaries
 In 11 th Annual ACM Symposium on Discrete Algorithms (SODA
, 1999
"... We consider static dictionaries over the universe U = on a unitcost RAM with word size w. Construction of a static dictionary with linear space consumption and constant lookup time can be done in linear expected time by a randomized algorithm. In contrast, the best previous deterministic a ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
We consider static dictionaries over the universe U = on a unitcost RAM with word size w. Construction of a static dictionary with linear space consumption and constant lookup time can be done in linear expected time by a randomized algorithm. In contrast, the best previous deterministic algorithm for constructing such a dictionary with n elements runs in time O(n ) for # > 0. This paper narrows the gap between deterministic and randomized algorithms exponentially, from the factor of to an O(log n) factor. The algorithm is weakly nonuniform, i.e. requires certain precomputed constants dependent on w. A byproduct of the result is a lookup time vs insertion time tradeo# for dynamic dictionaries, which is optimal for a certain class of deterministic hashing schemes.
Hash and displace: Efficient evaluation of minimal perfect hash functions
 In Workshop on Algorithms and Data Structures
, 1999
"... A new way of constructing (minimal) perfect hash functions is described. The technique considerably reduces the overhead associated with resolving buckets in twolevel hashing schemes. Evaluating a hash function requires just one multiplication and a few additions apart from primitive bit operations ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
A new way of constructing (minimal) perfect hash functions is described. The technique considerably reduces the overhead associated with resolving buckets in twolevel hashing schemes. Evaluating a hash function requires just one multiplication and a few additions apart from primitive bit operations. The number of accesses to memory is two, one of which is to a fixed location. This improves the probe performance of previous minimal perfect hashing schemes, and is shown to be optimal. The hash function description (“program”) for a set of size n occupies O(n) words, and can be constructed in expected O(n) time. 1
Random Access to GrammarCompressed Strings
, 2011
"... Let S be a string of length N compressed into a contextfree grammar S of size n. We present two representations of S achieving O(log N) random access time, and either O(n · αk(n)) construction time and space on the pointer machine model, or O(n) construction time and space on the RAM. Here, αk(n) is ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
Let S be a string of length N compressed into a contextfree grammar S of size n. We present two representations of S achieving O(log N) random access time, and either O(n · αk(n)) construction time and space on the pointer machine model, or O(n) construction time and space on the RAM. Here, αk(n) is the inverse of the k th row of Ackermann’s function. Our representations also efficiently support decompression of any substring in S: we can decompress any substring of length m in the same complexity as a single random access query and additional O(m) time. Combining these results with fast algorithms for uncompressed approximate string matching leads to several efficient algorithms for approximate string matching on grammarcompressed strings without decompression. For instance, we can find all approximate occurrences of a pattern P with at most k errors in time O(n(min{P k, k 4 + P } + log N) + occ), where occ is the number of occurrences of P in S. Finally, we are able to generalize our results to navigation and other operations on grammarcompressed trees. All of the above bounds significantly improve the currently best known results. To achieve these bounds, we introduce several new techniques and data structures of independent interest, including a predecessor data structure, two ”biased” weighted ancestor data structures, and a compact representation of heavypaths in grammars.
Lower Bounds for Dynamic Algebraic Problems
, 1998
"... We consider dynamic evaluation of algebraic functions (matrix multiplication, determinant, convolution, Fourier transform, etc.) in the model of Reif and Tate; i.e., if f(x 1 ; : : : ; xn ) = (y 1 ; : : : ; y m ) is an algebraic problem, we consider serving online requests of the form \change i ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
We consider dynamic evaluation of algebraic functions (matrix multiplication, determinant, convolution, Fourier transform, etc.) in the model of Reif and Tate; i.e., if f(x 1 ; : : : ; xn ) = (y 1 ; : : : ; y m ) is an algebraic problem, we consider serving online requests of the form \change input x i to value v" or \what is the value of output y i ?". We present techniques for showing lower bounds on the worst case time complexity per operation for such problems. The rst gives lower bounds in a wide range of rather powerful models (for instance history dependent algebraic computation trees over any in nite subset of a eld, the integer RAM, and the generalized real RAM model of BenAmram and Galil). Using this technique, we show optimal n) bounds for dynamic matrixvector product, dynamic matrix multiplication and dynamic discriminant and an n) lower bound for dynamic polynomial multiplication (convolution), providing a good match with Reif and Tate's O( n log n) upper bound. We also show linear lower bounds for dynamic determinant, matrix adjoint and matrix inverse and an n) lower bound for the elementary symmetric functions. The second technique is the communication complexity technique of Miltersen, Nisan, Safra, and Wigderson which we apply to the setting of dynamic algebraic problems, obtaining similar lower bounds in the word RAM model. The third technique gives lower bounds in the weaker straight line program model. Using this technique, we show an 457 n) = log log n) lower bound for dynamic discrete Fourier transform.