Results 11  20
of
161
Deriving a Lazy Abstract Machine
 Journal of Functional Programming
, 1997
"... Machine Peter Sestoft Department of Mathematics and Physics Royal Veterinary and Agricultural University Thorvaldsensvej 40, DK1871 Frederiksberg C, Denmark Email: sestoft@dina.kvl.dk Version 6 of March 13, 1996 Abstract We derive a simple abstract machine for lazy evaluation of the lambda cal ..."
Abstract

Cited by 67 (2 self)
 Add to MetaCart
Machine Peter Sestoft Department of Mathematics and Physics Royal Veterinary and Agricultural University Thorvaldsensvej 40, DK1871 Frederiksberg C, Denmark Email: sestoft@dina.kvl.dk Version 6 of March 13, 1996 Abstract We derive a simple abstract machine for lazy evaluation of the lambda calculus, starting from Launchbury's natural semantics. Lazy evaluation here means nonstrict evaluation with sharing of argument evaluation, that is, callbyneed. The machine we derive is a lazy version of Krivine's abstract machine, which was originally designed for callbyname evaluation. We extend it with datatype constructors and base values, so the final machine implements all dynamic aspects of a lazy functional language. 1 Introduction The development of an efficient abstract machine for lazy evaluation usually starts from either a graph reduction machine or an environment machine. Graph reduction machines perform substitution by rewriting the term graph, that is, the program itself...
Preservation of Strong Normalisation in Named Lambda Calculi with Explicit Substitution and Garbage Collection
 IN CSN95: COMPUTER SCIENCE IN THE NETHERLANDS
, 1995
"... In this paper we introduce and study a new lambdacalculus with explicit substitution, lambdaxgc, which has two distinguishing features: first, it retains the use of traditional variable names, specifying terms modulo renaming; this simplifies the reduction system. Second, it includes reduction rul ..."
Abstract

Cited by 65 (7 self)
 Add to MetaCart
In this paper we introduce and study a new lambdacalculus with explicit substitution, lambdaxgc, which has two distinguishing features: first, it retains the use of traditional variable names, specifying terms modulo renaming; this simplifies the reduction system. Second, it includes reduction rules for explicit garbage collection; this simplifies several proofs. We show that lambdaxgc is a conservative extension which preserves strong normalisation (PSN) of the untyped lambdacalculus. The result is obtained in a modular way by first proving it for garbagefree reduction and then extending to `reductions in garbage'. This provides insight into the counterexample to PSN for lambdasigma of Melliès (1995); we exploit the abstract nature of lambdaxgc to show how PSN is in conflict with any reasonable substitution composition rule (except for trivial composition rules of which we mention one). Key words: lambda calculus, explicit substitution, strong normalisation, garbage collection.
A semantic basis for Quest
 JOURNAL OF FUNCTIONAL PROGRAMMING
, 1991
"... Quest is a programming language based on impredicative type quantifiers and subtyping within a threelevel structure of kinds, types and type operators, and values. The semantics of Quest is rather challenging. In particular, difficulties arise when we try to model simultaneously features such as c ..."
Abstract

Cited by 63 (13 self)
 Add to MetaCart
Quest is a programming language based on impredicative type quantifiers and subtyping within a threelevel structure of kinds, types and type operators, and values. The semantics of Quest is rather challenging. In particular, difficulties arise when we try to model simultaneously features such as contravariant function spaces, record types, subtyping, recursive types, and fixpoints. In this paper we describe in detail the type inference rules for Quest, and we give them meaning using a partial equivalence relation model of types. Subtyping is interpreted as in previous work by Bruce and Longo, but the interpretation of some aspects, namely subsumption, power kinds, and record subtyping, is novel. The latter is based on a new encoding of record types. We concentrate on modeling quantifiers and subtyping; recursion is the subject of current work.
Fully abstract semantics for observably sequential languages
 Information and Computation
, 1994
"... One of the major challenges in denotational semantics is the construction of a fully abstract semantics for a higherorder sequential programming language. For the past fifteen years, research on this problem has focused on developing a semantics for PCF, an idealized functional programming language ..."
Abstract

Cited by 49 (4 self)
 Add to MetaCart
One of the major challenges in denotational semantics is the construction of a fully abstract semantics for a higherorder sequential programming language. For the past fifteen years, research on this problem has focused on developing a semantics for PCF, an idealized functional programming language based on the typed λcalculus. Unlike most practical languages, PCF has no facilities for observing and exploiting the evaluation order of arguments to procedures. Since we believe that these facilities play a crucial role in sequential computation, this paper focuses on a sequential extension of PCF, called SPCF, that includes two classes of control operators: a possibly empty set of error generators and a collection of catch and throw constructs. For each set of error generators, the paper presents a fully abstract semantics for SPCF. If the set of error generators is empty, the semantics interprets all procedures—including catch and throw—as BerryCurien sequential algorithms. If the language contains error generators, procedures denote manifestly sequential functions. The manifestly sequential functions form a Scott domain that is isomorphic to a domain of decision trees, which is the natural
Observable Sequentiality and Full Abstraction
 In Proceedings of POPL ’92
, 1992
"... ion Robert Cartwright Matthias Felleisen Department of Computer Science Rice University Houston, TX 772511892 Abstract One of the major challenges in denotational semantics is the construction of fully abstract models for sequential programming languages. For the past fifteen years, research o ..."
Abstract

Cited by 39 (5 self)
 Add to MetaCart
ion Robert Cartwright Matthias Felleisen Department of Computer Science Rice University Houston, TX 772511892 Abstract One of the major challenges in denotational semantics is the construction of fully abstract models for sequential programming languages. For the past fifteen years, research on this problem has focused on developing models for PCF, an idealized functional programming language based on the typed lambda calculus. Unlike most practical languages, PCF has no facilities for observing and exploiting the evaluation order of arguments in procedures. Since we believe that such facilities are crucial for understanding the nature of sequential computation, this paper focuses on a sequential extension of PCF (called SPCF) that includes two classes of control operators: error generators and escape handlers. These new control operators enable us to construct a fully abstract model for SPCF that interprets higher types as sets of errorsensitive functions instead of continuous...
Provable Isomorphisms of Types
 MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE
, 1990
"... A constructive characterization is given of the isomorphisms which must hold in all models of the typed lambda calculus with surjective pairing. By the close relation between closed Cartesian categories and models of these calculi, we also produce a characterization of those isomorphisms which hold ..."
Abstract

Cited by 39 (8 self)
 Add to MetaCart
A constructive characterization is given of the isomorphisms which must hold in all models of the typed lambda calculus with surjective pairing. By the close relation between closed Cartesian categories and models of these calculi, we also produce a characterization of those isomorphisms which hold in all CCC's. By the correspondence between these calculi and proofs in intuitionistic positive propositional logic, we thus provide a characterization of equivalent formulae of this logic, where the definition of equivalence of terms depends on having "invertible" proofs between the two terms. Rittri (1989), on types as search keys in program libraries, provides an interesting example of use of these characterizations.
An Extensible Type System for ComponentBased Design
, 2002
"... Abstract. We present the design and implementation of the type system for Ptolemy II, which is a tool for componentbased heterogeneous modeling and design. This type system combines static typing with runtime type checking. It supports polymorphic typing of components, and allows automatic lossles ..."
Abstract

Cited by 37 (9 self)
 Add to MetaCart
Abstract. We present the design and implementation of the type system for Ptolemy II, which is a tool for componentbased heterogeneous modeling and design. This type system combines static typing with runtime type checking. It supports polymorphic typing of components, and allows automatic lossless type conversion at runtime. To achieve this, we use a lattice to model the lossless type conversion relation among types, and use inequalities defined over the type lattice to specify type constraints in components and across components. The system of inequalities can be solved efficiently, with existence and uniqueness of a solution guaranteed by fixedpoint theorems. This type system increases the safety and flexibility of the design environment, promotes component reuse, and helps simplify component development and optimization. The infrastructure we have built is generic in that it is not bound to one particular type lattice. The type system can be extended in two ways: by adding more types to the lattice, or by using different lattices to model different system properties. Higherorder function types and extended types can be accommodated in this way. 1
The Virtues of Etaexpansion
, 1993
"... Interpreting jconversion as an expansion rule in the simplytyped calculus maintains the confluence of reduction in a richer type structure. This use of expansions is supported by categorical models of reduction, where ficontraction, as the local counit, and jexpansion, as the local unit, are li ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
Interpreting jconversion as an expansion rule in the simplytyped calculus maintains the confluence of reduction in a richer type structure. This use of expansions is supported by categorical models of reduction, where ficontraction, as the local counit, and jexpansion, as the local unit, are linked by local triangle laws. The latter form reduction loops, but strong normalisation (to the long fijnormal forms) can be recovered by "cutting" the loops.
On Girard’s “Candidats de Réductibilité
 Logic and Computer Science
, 1990
"... Abstract: We attempt to elucidate the conditions required on Girard’s candidates of reducibility (in French, “candidats de reductibilité”) in order to establish certain properties of various typed lambda calculi, such as strong normalization and ChurchRosser property. We present two generalizations ..."
Abstract

Cited by 33 (5 self)
 Add to MetaCart
Abstract: We attempt to elucidate the conditions required on Girard’s candidates of reducibility (in French, “candidats de reductibilité”) in order to establish certain properties of various typed lambda calculi, such as strong normalization and ChurchRosser property. We present two generalizations of the candidates of reducibility, an untyped version in the line of Tait and Mitchell, and a typed version which is an adaptation of Girard’s original method. As an application of this general result, we give two proofs of strong normalization for the secondorder polymorphic lambda calculus under ⌘reduction (and thus underreduction). We present two sets of conditions for the typed version of the candidates. The first set consists of conditions similar to those used by Stenlund (basically the typed version of Tait’s conditions), and the second set consists of Girard’s original conditions. We also compare these conditions, and prove that Girard’s conditions are stronger than Tait’s conditions. We give a new proof of the ChurchRosser theorem for bothreduction and ⌘reduction, using the modified version of Girard’s method. We also compare various proofs that have appeared in the literature (see section 11). We conclude by sketching the extension of the above results to Girard’s higherorder polymorphic calculus F!, and in appendix 1, to F! with product types. i 1
A Semantic analysis of control
, 1998
"... This thesis examines the use of denotational semantics to reason about control flow in sequential, basically functional languages. It extends recent work in game semantics, in which programs are interpreted as strategies for computation by interaction with an environment. Abramsky has suggested that ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
This thesis examines the use of denotational semantics to reason about control flow in sequential, basically functional languages. It extends recent work in game semantics, in which programs are interpreted as strategies for computation by interaction with an environment. Abramsky has suggested that an intensional hierarchy of computational features such as state, and their fully abstract models, can be captured as violations of the constraints on strategies in the basic functional model. Nonlocal control flow is shown to fit into this framework as the violation of strong and weak ‘bracketing ’ conditions, related to linear behaviour. The language µPCF (Parigot’s λµ with constants and recursion) is adopted as a simple basis for highertype, sequential computation with access to the flow of control. A simple operational semantics for both callbyname and callbyvalue evaluation is described. It is shown that dropping the bracketing condition on games models of PCF yields fully abstract models of µPCF.