Results 1  10
of
217
Coalgebraic Logic
 Annals of Pure and Applied Logic
, 1999
"... We present a generalization of modal logic to logical systems which are interpreted on coalgebras of functors on sets. The leading idea is that infinitary modal logic contains characterizing formulas. That is, every modelworld pair is characterized up to bisimulation by an infinitary formula. The ..."
Abstract

Cited by 89 (0 self)
 Add to MetaCart
We present a generalization of modal logic to logical systems which are interpreted on coalgebras of functors on sets. The leading idea is that infinitary modal logic contains characterizing formulas. That is, every modelworld pair is characterized up to bisimulation by an infinitary formula. The point of our generalization is to understand this on a deeper level. We do this by studying a frangment of infinitary modal logic which contains the characterizing formulas and is closed under infinitary conjunction and an operation called 4. This fragment generalizes to a wide range of coalgebraic logics. We then apply the characterization result to get representation theorems for final coalgebras in terms of maximal elements of ordered algebras. The end result is that the formulas of coalgebraic logics can be viewed as approximations to the elements of the final coalgebra. Keywords: infinitary modal logic, characterization theorem, functor on sets, coalgebra, greatest fixed point. 1 Intr...
Abstract behavior types: A foundation model for components and their composition
 SCIENCE OF COMPUTER PROGRAMMING
, 2003
"... ..."
Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach
, 1998
"... . The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a ..."
Abstract

Cited by 74 (15 self)
 Add to MetaCart
. The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a continuous setting involving Borel probability measures. Under reasonable conditions, generalized probabilistic bisimilarity can be characterized categorically. Application of the final coalgebra paradigm then yields an internally fully abstract semantical domain with respect to probabilistic bisimulation. Keywords. Bisimulation, probabilistic transition system, coalgebra, ultrametric space, Borel measure, final coalgebra. 1 Introduction For discrete probabilistic transition systems the notion of probabilistic bisimilarity of Larsen and Skou [LS91] is regarded as the basic process equivalence. The definition was given for reactive systems. However, Van Glabbeek, Smolka and Steffen s...
Automata and coinduction (an exercise in coalgebra
 LNCS
, 1998
"... The classical theory of deterministic automata is presented in terms of the notions of homomorphism and bisimulation, which are the cornerstones of the theory of (universal) coalgebra. This leads to a transparent and uniform presentation of automata theory and yields some new insights, amongst which ..."
Abstract

Cited by 62 (16 self)
 Add to MetaCart
The classical theory of deterministic automata is presented in terms of the notions of homomorphism and bisimulation, which are the cornerstones of the theory of (universal) coalgebra. This leads to a transparent and uniform presentation of automata theory and yields some new insights, amongst which coinduction proof methods for language equality and language inclusion. At the same time, the present treatment of automata theory may serve as an introduction to coalgebra.
A Coinductive Calculus of Component Connectors
, 2002
"... Reo is a recently introduced channelbased coordination model, wherein complex coordinators, called connectors, are compositionally built out of simpler ones. Using a more liberal notion of a channel, Reo generalises existing dataflow networks. In this paper, we present a simple and transparent sema ..."
Abstract

Cited by 58 (25 self)
 Add to MetaCart
Reo is a recently introduced channelbased coordination model, wherein complex coordinators, called connectors, are compositionally built out of simpler ones. Using a more liberal notion of a channel, Reo generalises existing dataflow networks. In this paper, we present a simple and transparent semantical model for Reo, in which connectors are relations on timed data streams. Timed data streams constitute a characteristic of our model and consist of twin pairs of separate data and time streams. Furthermore, coinduction is our main reasoning principle and we use it to prove properties such as connector equivalence.
ManySorted Coalgebraic Modal Logic: a Modeltheoretic Study
 Theoretical Informatics and Applications
, 2001
"... This paper gives a semantical underpinning for a manysorted modal logic associated with certain dynamical systems, like transition systems, automata or classes in objectoriented languages. These systems will be described as coalgebras of socalled polynomial functors, built up from constants an ..."
Abstract

Cited by 53 (3 self)
 Add to MetaCart
This paper gives a semantical underpinning for a manysorted modal logic associated with certain dynamical systems, like transition systems, automata or classes in objectoriented languages. These systems will be described as coalgebras of socalled polynomial functors, built up from constants and identities, using products, coproducts and powersets. The semantical account involves Boolean algebras with operators indexed by polynomial functors, called MBAOs, for Manysorted Boolean Algebras with Operators, combining standard (categorical) models of modal logic and of manysorted predicate logic.
A Hierarchy of Probabilistic System Types
, 2003
"... We study various notions of probabilistic bisimulation from a coalgebraic point of view, accumulating in a hierarchy of probabilistic system types. In general, a natural transformation between two Setfunctors straightforwardly gives rise to a transformation of coalgebras for the respective functors ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
We study various notions of probabilistic bisimulation from a coalgebraic point of view, accumulating in a hierarchy of probabilistic system types. In general, a natural transformation between two Setfunctors straightforwardly gives rise to a transformation of coalgebras for the respective functors. This latter transformation preserves homomorphisms and thus bisimulations. For comparison of probabilistic system types we also need reflection of bisimulation. We build the hierarchy of probabilistic systems by exploiting the new result that the transformation also reflects bisimulation in case the natural transformation is componentwise injective and the first functor preserves weak pullbacks. Additionally, we illustrate the correspondence of concrete and coalgebraic bisimulation in the case of general Segalatype systems.
Coalgebras and Modal Logic
 Coalgebraic Methods in Computer Science, Volume 33 in Electronic Notes in Theoretical Computer Science
, 2000
"... Coalgebras are of growing importance in theoretical computer science. To develop languages for them is significant for the specification and verification of systems modelled with them. Modal logic has proved to be suitable for this purpose. So far, most approaches have presented a language to descri ..."
Abstract

Cited by 33 (0 self)
 Add to MetaCart
Coalgebras are of growing importance in theoretical computer science. To develop languages for them is significant for the specification and verification of systems modelled with them. Modal logic has proved to be suitable for this purpose. So far, most approaches have presented a language to describe only deterministic coalgebras. The present paper introduces a generalization that also covers nondeterministic systems. As a special case, we obtain the "usual" modal logic for Kripkestructures. Models for our modal language L F are Fcoalgebras where the functor F is inductively constructed from constant sets and the identity functor using product, coproduct, exponentiation, and the power set functor. We define a language L F and show that it embeds into L F . We prove that, for imagefinite coalgebras, L F is expressive enough to distinguish elements up to bisimilarity and therefore L F does so, too. Moreover, we also give a complete calculus for L F in case the constants...
Semantical Principles in the Modal Logic of Coalgebraic
"... Coalgebras for a functor on the category of sets subsume many formulations of the notion of transition system, including labelled transition systems, Kripke models, Kripke frames and many types of automata. This paper presents a multimodal language which is bisimulation invariant and (under a natur ..."
Abstract

Cited by 30 (6 self)
 Add to MetaCart
Coalgebras for a functor on the category of sets subsume many formulations of the notion of transition system, including labelled transition systems, Kripke models, Kripke frames and many types of automata. This paper presents a multimodal language which is bisimulation invariant and (under a natural completeness condition) expressive enough to characterise elements of the underlying state space up to bisimulation. Like Moss' coalgebraic logic, the theory can be applied to an arbitrary signature functor on the category of sets. Also, an upper bound for the size of conjunctions and disjunctions needed to obtain characteristic formulas is given.