Results 11  20
of
131
Domain theory for concurrency
, 2003
"... Concurrent computation can be given an abstract mathematical treatment very similar to that provided for sequential computation by domain theory and denotational semantics of Scott and Strachey. ..."
Abstract

Cited by 28 (6 self)
 Add to MetaCart
Concurrent computation can be given an abstract mathematical treatment very similar to that provided for sequential computation by domain theory and denotational semantics of Scott and Strachey.
A Relational Model of NonDeterministic Dataflow
 In CONCUR'98, volume 1466 of LNCS
, 1998
"... . We recast dataflow in a modern categorical light using profunctors as a generalisation of relations. The well known causal anomalies associated with relational semantics of indeterminate dataflow are avoided, but still we preserve much of the intuitions of a relational model. The development fits ..."
Abstract

Cited by 27 (13 self)
 Add to MetaCart
. We recast dataflow in a modern categorical light using profunctors as a generalisation of relations. The well known causal anomalies associated with relational semantics of indeterminate dataflow are avoided, but still we preserve much of the intuitions of a relational model. The development fits with the view of categories of models for concurrency and the general treatment of bisimulation they provide. In particular it fits with the recent categorical formulation of feedback using traced monoidal categories. The payoffs are: (1) explicit relations to existing models and semantics, especially the usual axioms of monotone IO automata are read off from the definition of profunctors, (2) a new definition of bisimulation for dataflow, the proof of the congruence of which benefits from the preservation properties associated with open maps and (3) a treatment of higherorder dataflow as a biproduct, essentially by following the geometry of interaction programme. 1 Introduction A fundament...
Models for NamePassing Processes: Interleaving and Causal
 In Proceedings of LICS 2000: the 15th IEEE Symposium on Logic in Computer Science (Santa Barbara
, 2000
"... We study syntaxfree models for namepassing processes. For interleaving semantics, we identify the indexing structure required of an early labelled transition system to support the usual picalculus operations, defining Indexed Labelled Transition Systems. For noninterleaving causal semantics we de ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
(Show Context)
We study syntaxfree models for namepassing processes. For interleaving semantics, we identify the indexing structure required of an early labelled transition system to support the usual picalculus operations, defining Indexed Labelled Transition Systems. For noninterleaving causal semantics we define Indexed Labelled Asynchronous Transition Systems, smoothly generalizing both our interleaving model and the standard Asynchronous Transition Systems model for CCSlike calculi. In each case we relate a denotational semantics to an operational view, for bisimulation and causal bisimulation respectively. We establish completeness properties of, and adjunctions between, categories of the two models. Alternative indexing structures and possible applications are also discussed. These are first steps towards a uniform understanding of the semantics and operations of namepassing calculi.
Higher dimensional transition systems
, 1996
"... We introduce the notion of higher dimensional transition systems as a model of concurrency providing an elementary, settheoretic formalisation of the idea of higher dimensional transition. We show an embedding of the category of higher dimensional transition systems into that of higher dimension ..."
Abstract

Cited by 25 (3 self)
 Add to MetaCart
(Show Context)
We introduce the notion of higher dimensional transition systems as a model of concurrency providing an elementary, settheoretic formalisation of the idea of higher dimensional transition. We show an embedding of the category of higher dimensional transition systems into that of higher dimensional automata which cuts down to an equivalence when we restrict to nondegenerate automata. Moreovel; we prove that the natural notion of bisimulation for such structures is a generalisation of the strong history preserving bisimulation, and provide an abstract categorical account of it via open maps. Finally, we dejine a notion of unfolding for higher dimensional transition systems and characterise the structures so obtained as a generalisation of event structures.
A Theory of Recursive Domains with Applications to Concurrency
 In Proc. of LICS ’98
, 1997
"... Marcelo Fiore , Glynn Winskel (1) BRICS , University of Aarhus, Denmark (2) LFCS, University of Edinburgh, Scotland December 1997 Abstract We develop a 2categorical theory for recursively defined domains. ..."
Abstract

Cited by 24 (14 self)
 Add to MetaCart
(Show Context)
Marcelo Fiore , Glynn Winskel (1) BRICS , University of Aarhus, Denmark (2) LFCS, University of Edinburgh, Scotland December 1997 Abstract We develop a 2categorical theory for recursively defined domains.
Bisimulation for general stochastic hybrid systems
 In HSCC 2005
, 2005
"... Abstract. In this paper we define a bisimulation concept for some very general models for stochastic hybrid systems (general stochastic hybrid systems). The definition of bisimulation builds on the ideas of Edalat and of Larsen and Skou and of Joyal, Nielsen and Winskel. The main result is that this ..."
Abstract

Cited by 21 (11 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we define a bisimulation concept for some very general models for stochastic hybrid systems (general stochastic hybrid systems). The definition of bisimulation builds on the ideas of Edalat and of Larsen and Skou and of Joyal, Nielsen and Winskel. The main result is that this bisimulation for GSHS is indeed an equivalence relation. The secondary result is that this bisimulation relation for the stochastic hybrid system models used in this paper implies the same kind of bisimulation for their continuous parts and respectively for their jumping structures.
Algebra and Logic for Resourcebased Systems Modelling
 UNDER CONSIDERATION FOR PUBLICATION IN MATH. STRUCT. IN COMP. SCIENCE
, 2009
"... ... often, models are required to be executable, as a simulation, on a computer. In this paper, we present some contributions to the processtheoretic and logical foundations of discreteevent modelling with resources and processes. We present a process calculus with an explicit representation of re ..."
Abstract

Cited by 19 (11 self)
 Add to MetaCart
... often, models are required to be executable, as a simulation, on a computer. In this paper, we present some contributions to the processtheoretic and logical foundations of discreteevent modelling with resources and processes. We present a process calculus with an explicit representation of resources in which processes and resources coevolve. The calculus is closely connected to a logic that may be used as a specification language for properties of models. The logic is strong enough to allow requirements that a system has certain structure; for example, that it is a parallel composite of subsystems. This work consolidates, extends, and improves upon aspects of earlier work of ours in this area. An extended example, consisting of a semantics for a simple parallel programming language, indicates a connection with separating logics for concurrency.
A Fully Abstract Presheaf Semantics of SCCS with Finite Delay
 Department of Computer Science, University of Aarhus
, 1999
"... We present a presheaf model for the observation of infinite as well as finite computations. We apply it to give a denotational semantics of SCCS with finite delay, in which the meanings of recursion are given by final coalgebras and meanings of finite delay by initial algebras of the process equatio ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
We present a presheaf model for the observation of infinite as well as finite computations. We apply it to give a denotational semantics of SCCS with finite delay, in which the meanings of recursion are given by final coalgebras and meanings of finite delay by initial algebras of the process equations for delay. This can be viewed as a first step in representing fairness in presheaf semantics. We give a concrete representation of the presheaf model as a category of generalised synchronisation trees and show that it is coreflective in a category of generalised transition systems, which are a special case of the general transition systems of Hennessy and Stirling. The open map bisimulation is shown to coincide with the extended bisimulation of Hennessy and Stirling. Finally we formulate Milners operational semantics of SCCS with finite delay in terms of generalised transition systems and prove that the presheaf semantics is fully abstract with respect to extended bisimulation