Results 1 
7 of
7
Van Kampen theorems for toposes
"... In this paper we introduce the notion of an extensive 2category, to be thought of as a "2category of generalized spaces". We consider an extensive 2category K equipped with a binaryproductpreserving pseudofunctor C : K CAT, which we think of as specifying the "coverings&quo ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
In this paper we introduce the notion of an extensive 2category, to be thought of as a "2category of generalized spaces". We consider an extensive 2category K equipped with a binaryproductpreserving pseudofunctor C : K CAT, which we think of as specifying the "coverings" of our generalized spaces. We prove, in this context, a van Kampen theorem which generalizes and refines one of Brown and Janelidze. The local properties required in this theorem are stated in terms of morphisms of effective descent for the pseudofunctor C . We specialize the general van Kampen theorem to the 2category Top S of toposes bounded over an elementary topos S , and to its full sub 2category LTop S determined by the locally connected toposes, after showing both of these 2categories to be extensive. We then consider three particular notions of coverings on toposes corresponding respectively to local homeomorphisms, covering projections, and unramified morphisms; in each case we deduce a suitable version of a van Kampen theorem in terms of coverings and, under further hypotheses, also one in terms of fundamental groupoids. An application is also given to knot groupoids and branched coverings. Along the way
FUNDAMENTAL PUSHOUT TOPOSES
"... Abstract. The author [2, 5] introduced and employed certain ‘fundamental pushout toposes ’ in the construction of the coverings fundamental groupoid of a locally connected topos. Our main purpose in this paper is to generalize this construction without the local connectedness assumption. In the spir ..."
Abstract
 Add to MetaCart
Abstract. The author [2, 5] introduced and employed certain ‘fundamental pushout toposes ’ in the construction of the coverings fundamental groupoid of a locally connected topos. Our main purpose in this paper is to generalize this construction without the local connectedness assumption. In the spirit of [16, 10, 8] we replace connected components by constructively complemented, or definable, monomorphisms [1]. Unlike the locally connected case, where the fundamental groupoid is localic prodiscrete and its classifying topos is a Galois topos, in the general case our version of the fundamental groupoid is a locally discrete progroupoid and there is no intrinsic Galois theory in the sense of [19]. We also discuss covering projections, locally trivial, and branched coverings without local connectedness by analogy with, but also necessarily departing from, the locally connected case [13, 11, 7]. Throughout, we work abstractly in a setting given axiomatically by a category V of locally discrete locales that has as examples the categories D of discrete locales, and Z of zerodimensional locales [9]. In this fashion we are led to give unified and often simpler proofs of old theorems in the locally connected case, as well as new ones without that assumption.