Results 1 
5 of
5
Number theory and elementary arithmetic
 Philosophia Mathematica
, 2003
"... Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show t ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context. 1
Does Mathematics Need New Axioms?
 American Mathematical Monthly
, 1999
"... this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called f ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called for the pursuit of new axioms to settle undecided arithmetical problems. And from 1947 on, with the publication of his unusual article, "What is Cantor's continuum problem?" [11], he called in addition for the pursuit of new axioms to settle Cantor's famous conjecture about the cardinal number of the continuum. In both cases, he pointed primarily to schemes of higher infinity in set theory as the direction in which to seek these new principles. Logicians have learned a great deal in recent years that is relevant to Godel's program, but there is considerable disagreement about what conclusions to draw from their results. I'm far from unbiased in this respect, and you'll see how I come out on these matters by the end of this essay, but I will try to give you a fair presentation of other positions along the way so you can decide for yourself which you favor.
INTERPRETABILITY IN ROBINSON’S Q
"... Abstract. Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is an impassable barrier in the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much mathematics can be interpreted in Rapha ..."
Abstract
 Add to MetaCart
Abstract. Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is an impassable barrier in the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much mathematics can be interpreted in Raphael Robinson’s theory of arithmetic Q. In the shadow of this program, some very nice logical investigations and results were produced by a number of people, not only regarding what can be interpreted in Q but also what cannot be so interpreted. We explain some of these results and rely on them to discuss Nelson’s position. §1. Introduction. Let L be the firstorder language with equality whose nonlogical symbols are the constant 0, the unary function symbol S (for successor) and two binary function symbols + (for addition) and · (for multiplication). The following theory was introduced in [35] (see also the systematic [42]): Definition 1. Raphael Robinson’s theory Q is the theory in the language L