Results 1  10
of
34
Theories for Complexity Classes and their Propositional Translations
 Complexity of computations and proofs
, 2004
"... We present in a uniform manner simple twosorted theories corresponding to each of eight complexity classes between AC and P. We present simple translations between these theories and systems of the quanti ed propositional calculus. ..."
Abstract

Cited by 33 (7 self)
 Add to MetaCart
(Show Context)
We present in a uniform manner simple twosorted theories corresponding to each of eight complexity classes between AC and P. We present simple translations between these theories and systems of the quanti ed propositional calculus.
Number theory and elementary arithmetic
 Philosophia Mathematica
, 2003
"... Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show t ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
(Show Context)
Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context. 1
Lectures on proof theory
 in Proc. Summer School in Logic, Leeds 67
, 1968
"... This is a survey of some of the principal developments in proof theory from its inception in the 1920s, at the hands of David Hilbert, up to the 1960s. Hilbert's aim was to use this as a tool in his nitary consistency program to eliminate the \actual in nite " in mathematics from proofs of ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
This is a survey of some of the principal developments in proof theory from its inception in the 1920s, at the hands of David Hilbert, up to the 1960s. Hilbert's aim was to use this as a tool in his nitary consistency program to eliminate the \actual in nite " in mathematics from proofs of purely nitary statements. One of the main approaches that turned out to be the most useful in pursuit of this program was that due to Gerhard Gentzen, in the 1930s, via his calculi of \sequents" and his CutElimination Theorem for them. Following that we trace how and why prima facie in nitary concepts, such as ordinals, and in nitary methods, such as the use of in nitely long proofs, gradually came to dominate prooftheoretical developments. In this rst lecture I will give anoverview of the developments in proof theory since Hilbert's initiative in establishing the subject in the 1920s. For this purpose I am following the rst part of a series of expository lectures that I gave for the Logic Colloquium `94 held in ClermontFerrand 2123 July 1994, but haven't published. The theme of my lectures there was that although Hilbert established his theory of proofs as a part of his foundational program and, for philosophical reasons whichwe shall get into, aimed to have it developed in a completely nitistic way, the actual work in proof theory This is the rst of three lectures that I delivered at the conference, Proof Theory: History
Quantified Propositional Calculus and a SecondOrder Theory for NC¹
, 2004
"... Let H be a proof system for the quantified propositional calculus (QPC). We j witnessing problem for H to be: given a prenex S j formula A, an Hproof of A, and a truth assignment to the free variables in A, find a witness for the outermost existential quantifiers in A. We point out that the S ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
Let H be a proof system for the quantified propositional calculus (QPC). We j witnessing problem for H to be: given a prenex S j formula A, an Hproof of A, and a truth assignment to the free variables in A, find a witness for the outermost existential quantifiers in A. We point out that the S witnessing problems for the systems G 1 and G 1 are complete for polynomial time and PLS (polynomial local search), respectively. We introduce
Theories With SelfApplication and Computational Complexity
 Information and Computation
, 2002
"... Applicative theories form the basis of Feferman's systems of explicit mathematics, which have been introduced in the early seventies. In an applicative universe, all individuals may be thought of as operations, which can freely be applied to each other: selfapplication is meaningful, but n ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
(Show Context)
Applicative theories form the basis of Feferman's systems of explicit mathematics, which have been introduced in the early seventies. In an applicative universe, all individuals may be thought of as operations, which can freely be applied to each other: selfapplication is meaningful, but not necessarily total. It has turned out that theories with selfapplication provide a natural setting for studying notions of abstract computability, especially from a prooftheoretic perspective.
Logical Approaches to the Complexity of Search Problems: Proof Complexity, Quantified Propositional Calculus, and Bounded Arithmetic
, 2005
"... ..."
Saturated models of universal theories
, 2001
"... A notion called Herbrand saturation is shown to provide the modeltheoretic analogue of a prooftheoretic method, Herbrand analysis, yielding uniform modeltheoretic proofs of a number of important conservation theorems. A constructive, algebraic variation of the method is described, providing yet ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
(Show Context)
A notion called Herbrand saturation is shown to provide the modeltheoretic analogue of a prooftheoretic method, Herbrand analysis, yielding uniform modeltheoretic proofs of a number of important conservation theorems. A constructive, algebraic variation of the method is described, providing yet a third approach, which is finitary but retains the semantic flavor of the modeltheoretic version.