Results 1  10
of
19
On the strength of Ramsey’s Theorem for pairs
 JOURNAL OF SYMBOLIC LOGIC
, 2001
"... We study the proof–theoretic strength and effective content denote Ramof the infinite form of Ramsey’s theorem for pairs. Let RT n k sey’s theorem for k–colorings of n–element sets, and let RT n < ∞ denote (∀k)RTn k. Our main result on computability is: For any n ≥ 2 and any computable (recurs ..."
Abstract

Cited by 78 (11 self)
 Add to MetaCart
(Show Context)
We study the proof–theoretic strength and effective content denote Ramof the infinite form of Ramsey’s theorem for pairs. Let RT n k sey’s theorem for k–colorings of n–element sets, and let RT n < ∞ denote (∀k)RTn k. Our main result on computability is: For any n ≥ 2 and any computable (recursive) k–coloring of the n–element sets of natural numbers, there is an infinite homogeneous set X with X ′ ′ ≤T 0 (n). Let I�n and B�n denote the �n induction and bounding schemes, respectively. Adapting the case n = 2 of the above result (where X is low2) to models is conservative of arithmetic enables us to show that RCA0 + I �2 + RT2 2 over RCA0 + I �2 for �1 1 statements and that RCA0 + I �3 + RT2 < ∞ is �1 1conservative over RCA0 + I �3. It follows that RCA0 + RT2 2 does not imply B �3. In contrast, J. Hirst showed that RCA0 + RT2 < ∞ does imply B �3, and we include a proof of a slightly strengthened version of this result. It follows that RT2 < ∞ is strictly stronger than RT2 2 over RC A0.
Number theory and elementary arithmetic
 Philosophia Mathematica
, 2003
"... Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show t ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
(Show Context)
Elementary arithmetic (also known as “elementary function arithmetic”) is a fragment of firstorder arithmetic so weak that it cannot prove the totality of an iterated exponential function. Surprisingly, however, the theory turns out to be remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context. 1
Weak theories of nonstandard arithmetic and analysis
 Reverse Mathematics
, 2001
"... Abstract. A general method of interpreting weak highertype theories of nonstandard arithmetic in their standard counterparts is presented. In particular, this provides natural nonstandard conservative extensions of primitive recursive arithmetic, elementary recursive arithmetic, and polynomialtime ..."
Abstract

Cited by 14 (6 self)
 Add to MetaCart
(Show Context)
Abstract. A general method of interpreting weak highertype theories of nonstandard arithmetic in their standard counterparts is presented. In particular, this provides natural nonstandard conservative extensions of primitive recursive arithmetic, elementary recursive arithmetic, and polynomialtime computable arithmetic. A means of formalizing basic real analysis in such theories is sketched. §1. Introduction. Nonstandard analysis, as developed by Abraham Robinson, provides an elegant paradigm for the application of metamathematical ideas in mathematics. The idea is simple: use modeltheoretic methods to build rich extensions of a mathematical structure, like secondorder arithmetic or a universe of sets; reason about what is true in these enriched structures;
A ModelTheoretic Approach to Ordinal Analysis
 Bulletin of Symbolic Logic
, 1997
"... . We describe a modeltheoretic approach to ordinal analysis via the finite combinatorial notion of an #large set of natural numbers. In contrast to syntactic approaches that use cut elimination, this approach involves constructing finite sets of numbers with combinatorial properties that, in no ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
(Show Context)
. We describe a modeltheoretic approach to ordinal analysis via the finite combinatorial notion of an #large set of natural numbers. In contrast to syntactic approaches that use cut elimination, this approach involves constructing finite sets of numbers with combinatorial properties that, in nonstandard instances, give rise to models of the theory being analyzed. This method is applied to obtain ordinal analyses of a number of interesting subsystems of first and secondorder arithmetic. x1. Introduction. Two of proof theory's defining goals are the justification of classical theories on constructive grounds, and the extraction of constructive information from classical proofs. Since Gentzen, ordinal analysis has been a major component in these pursuits, and the assignment of recursive ordinals to theories has proven to be an illuminating way of measuring their constructive strength. The traditional approach to ordinal analysis, which uses cutelimination procedures to transfor...
Saturated models of universal theories
, 2001
"... A notion called Herbrand saturation is shown to provide the modeltheoretic analogue of a prooftheoretic method, Herbrand analysis, yielding uniform modeltheoretic proofs of a number of important conservation theorems. A constructive, algebraic variation of the method is described, providing yet ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
(Show Context)
A notion called Herbrand saturation is shown to provide the modeltheoretic analogue of a prooftheoretic method, Herbrand analysis, yielding uniform modeltheoretic proofs of a number of important conservation theorems. A constructive, algebraic variation of the method is described, providing yet a third approach, which is finitary but retains the semantic flavor of the modeltheoretic version.
Forcing in Proof Theory
 BULL SYMB LOGIC
, 2004
"... Paul Cohen's method of forcing, together with Saul Kripke's related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
(Show Context)
Paul Cohen's method of forcing, together with Saul Kripke's related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbertstyle proof theory, where the goal is to formalize portions of ordinary mathematics in restricted axiomatic theories, and study those theories in constructive or syntactic terms. I will discuss the aspects of forcing that are useful in this respect, and some sample applications. The latter include ways of obtaining conservation results for classical and intuitionistic theories, interpreting classical theories in constructive ones, and constructivizing modeltheoretic arguments.
Some conservation results for weak König’s lemma
 ANNALS OF PURE AND APPLIED LOGIC
, 2002
"... By RCA0, we denote the system of second order arithmetic based on recursive comprehension axioms and Σ 0 1 induction. WKL0 is defined to be RCA0 plus weak König’s lemma: every infinite tree of sequences of 0’s and 1’s has an infinite path. In this paper, we first show that for any countable model M ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
By RCA0, we denote the system of second order arithmetic based on recursive comprehension axioms and Σ 0 1 induction. WKL0 is defined to be RCA0 plus weak König’s lemma: every infinite tree of sequences of 0’s and 1’s has an infinite path. In this paper, we first show that for any countable model M of RCA0, there exists a countable model M ′ of WKL0 whose first order part is the same as that of M, and whose second order part consists of the Mrecursive sets and sets not in the second order part of M. By combining this fact with a certain forcing argument over universal trees, we obtain the following result (which has been called Tanaka’s conjecture): if WKL0 proves ∀X∃!Yϕ(X, Y) with ϕ arithmetical, so does RCA0. We also discuss several improvements of this results.
Harrington’s conservation theorem redone
 In: Archive for Mathematical Logic
, 2008
"... Leo Harrington showed that the secondorder theory of arithmetic WKL0 is Π 1 1conservative over the theory RCA0. Harrington’s proof is modeltheoretic, making use of a forcing argument. A purely prooftheoretic proof, avoiding forcing, has been eluding the efforts of researchers. In this short paper ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
(Show Context)
Leo Harrington showed that the secondorder theory of arithmetic WKL0 is Π 1 1conservative over the theory RCA0. Harrington’s proof is modeltheoretic, making use of a forcing argument. A purely prooftheoretic proof, avoiding forcing, has been eluding the efforts of researchers. In this short paper, we present a proof of Harrington’s result using a cutelimination argument. 1
On Mathematical Instrumentalism
, 2005
"... In this paper we devise some technical tools for dealing with problems connected with the philosophical view usually called mathematical instrumentalism. These tools are interesting in their own right, independently of their philosophical consequences. For example, we show that even though the fragm ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
In this paper we devise some technical tools for dealing with problems connected with the philosophical view usually called mathematical instrumentalism. These tools are interesting in their own right, independently of their philosophical consequences. For example, we show that even though the fragment of Peano’s Arithmetic known as IΣ1 is a conservative extension of the equational theory of Primitive Recursive Arithmetic (P RA), IΣ1 has a superexponential speedup over P RA. On the other hand, theories studied in the Program of Reverse Mathematics that formalize powerful mathematical principles have only polynomial speedup over IΣ1. 1
Noname manuscript No. (will be inserted by the editor) Harrington’s Conservation Theorem Redone
"... Abstract Leo Harrington showed that the secondorder theory of arithmetic WKL0 is Π11conservative over the theory RCA0. Harrington’s proof is modeltheoretic, making use of a forcing argument. A purely prooftheoretic proof, avoiding forcing, has been eluding the efforts of researchers. In this sho ..."
Abstract
 Add to MetaCart
Abstract Leo Harrington showed that the secondorder theory of arithmetic WKL0 is Π11conservative over the theory RCA0. Harrington’s proof is modeltheoretic, making use of a forcing argument. A purely prooftheoretic proof, avoiding forcing, has been eluding the efforts of researchers. In this short paper, we present a proof of Harrington’s result using a cutelimination argument.