Results 1  10
of
38
The twoparameter PoissonDirichlet distribution derived from a stable subordinator.
, 1995
"... The twoparameter PoissonDirichlet distribution, denoted pd(ff; `), is a distribution on the set of decreasing positive sequences with sum 1. The usual PoissonDirichlet distribution with a single parameter `, introduced by Kingman, is pd(0; `). Known properties of pd(0; `), including the Markov ..."
Abstract

Cited by 218 (37 self)
 Add to MetaCart
The twoparameter PoissonDirichlet distribution, denoted pd(ff; `), is a distribution on the set of decreasing positive sequences with sum 1. The usual PoissonDirichlet distribution with a single parameter `, introduced by Kingman, is pd(0; `). Known properties of pd(0; `), including the Markov chain description due to VershikShmidtIgnatov, are generalized to the twoparameter case. The sizebiased random permutation of pd(ff; `) is a simple residual allocation model proposed by Engen in the context of species diversity, and rediscovered by Perman and the authors in the study of excursions of Brownian motion and Bessel processes. For 0 ! ff ! 1, pd(ff; 0) is the asymptotic distribution of ranked lengths of excursions of a Markov chain away from a state whose recurrence time distribution is in the domain of attraction of a stable law of index ff. Formulae in this case trace back to work of Darling, Lamperti and Wendel in the 1950's and 60's. The distribution of ranked lengths of e...
Probability laws related to the Jacobi theta and Riemann zeta functions, and the Brownian excursions
 Bulletin (New series) of the American Mathematical Society
"... Abstract. This paper reviews known results which connect Riemann’s integral representations of his zeta function, involving Jacobi’s theta function and its derivatives, to some particular probability laws governing sums of independent exponential variables. These laws are related to onedimensional ..."
Abstract

Cited by 55 (12 self)
 Add to MetaCart
Abstract. This paper reviews known results which connect Riemann’s integral representations of his zeta function, involving Jacobi’s theta function and its derivatives, to some particular probability laws governing sums of independent exponential variables. These laws are related to onedimensional Brownian motion and to higher dimensional Bessel processes. We present some characterizations of these probability laws, and some approximations of Riemann’s zeta function which are related to these laws. Contents
Arcsine laws and interval partitions derived from a stable subordinator
 Proc. London Math. Soc
, 1992
"... Le"vy discovered that the fraction of time a standard onedimensional Brownian motion B spends positive before time t has arcsine distribution, both for / a fixed time when B, #0 almost surely, and for / an inverse local time, when B, = 0 almost surely. This identity in distribution is extended fro ..."
Abstract

Cited by 44 (25 self)
 Add to MetaCart
Le"vy discovered that the fraction of time a standard onedimensional Brownian motion B spends positive before time t has arcsine distribution, both for / a fixed time when B, #0 almost surely, and for / an inverse local time, when B, = 0 almost surely. This identity in distribution is extended from the fraction of time spent positive to a large collection of functionals derived from the lengths and signs of excursions of B away from 0. Similar identities in distribution are associated with any process whose zero set is the range of a stable subordinator, for instance a Bessel process of dimension d for 1.
The SDE solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree or forest
, 1997
"... Let B be a standard onedimensional Brownian motion started at 0. Let L t;v (jBj) be the occupation density of jBj at level v up to time t. The distribution of the process of local times (L t;v (jBj); v 0) conditionally given B t = 0 and L t;0 (jBj) = ` is shown to be that of the unique strong solu ..."
Abstract

Cited by 25 (7 self)
 Add to MetaCart
Let B be a standard onedimensional Brownian motion started at 0. Let L t;v (jBj) be the occupation density of jBj at level v up to time t. The distribution of the process of local times (L t;v (jBj); v 0) conditionally given B t = 0 and L t;0 (jBj) = ` is shown to be that of the unique strong solution X of the Ito SDE dXv = n 4 \Gamma X 2 v \Gamma t \Gamma R v 0 Xudu \Delta \Gamma1 o dv + 2 p XvdBv on the interval [0; V t (X)), where V t (X) := inffv : R v 0 Xudu = tg, and Xv = 0 for all v V t (X). This conditioned form of the RayKnight description of Brownian local times arises from study of the asymptotic distribution as n !1 and 2k= p n ! ` of the height profile of a uniform rooted random forest of k trees labeled by a set of n elements, as obtained by conditioning a uniform random mapping of the set to itself to have k cyclic points. The SDE is the continuous analog of a simple description of a GaltonWatson branching process conditioned on its total progeny....
On the Relative Lengths of Excursions Derived From a Stable Subordinator
, 1996
"... Results are obtained concerning the distribution of ranked relative lengths of excursions of a recurrent Markov process from a point in its state space whose inverse local time process is a stable subordinator. It is shown that for a large class of random times T the distribution of relative excursi ..."
Abstract

Cited by 14 (6 self)
 Add to MetaCart
Results are obtained concerning the distribution of ranked relative lengths of excursions of a recurrent Markov process from a point in its state space whose inverse local time process is a stable subordinator. It is shown that for a large class of random times T the distribution of relative excursion lengths prior to T is the same as if T were a fixed time. It follows that the generalized arcsine laws of Lamperti extend to such random times T . For some other random times T , absolute continuity relations are obtained which relate the law of the relative lengths at time T to the law at a fixed time. 1 Introduction Following Lamperti [10], Wendel [24], Kingman [7], Knight [8], PermanPitman Yor [12, 13, 15], consider the sequence V 1 (T ) V 2 (T ) \Delta \Delta \Delta (1) of ranked lengths of component intervals of the set [0; T ]nZ, where T is a strictly positive random time, and Z is the zero set of a Markov process X started at zero, such as a Brownian motion or Bessel process,...
Brownian Motion, Bridge, Excursion, and Meander Characterized by Sampling at Independent Uniform Times
 ELECTRON. J. PROBAB
, 1999
"... For a random process X consider the random vector defined by the values of X at times 0
Abstract

Cited by 12 (3 self)
 Add to MetaCart
For a random process X consider the random vector defined by the values of X at times 0 <U n,1 < ... < U n,n < 1 and the minimal values of X on each of the intervals between consecutive pairs of these times, where the U n,i are the order statistics of n independent uniform (0, 1) variables, independent of X . The joint law of this random vector is explicitly described when X is a Brownian motion. Corresponding results for Brownian bridge, excursion, and meander are deduced by appropriate conditioning. These descriptions yield numerous new identities involving the laws of these processes, and simplified proofs of various known results, including Aldous's characterization of the random tree constructed by sampling the excursion at n independent uniform times, Vervaat's transformation of Brownian bridge into Brownian excursion, and Denisov's decomposition of the Brownian motion at the time of its minimum into two independent Brownian meanders. Other consequences of the sampling formulae a...
Invariance principles for nonuniform random mappings and trees
 ASYMPTOTIC COMBINATORICS WITH APPLICATIONS IN MATHEMATICAL PHYSICS
, 2002
"... In the context of uniform random mappings of an nelement set to itself, Aldous and Pitman (1994) established a functional invariance principle, showing that many n!1 limit distributions can be described as distributions of suitable functions of reflecting Brownian bridge. To study nonuniform cases ..."
Abstract

Cited by 11 (9 self)
 Add to MetaCart
In the context of uniform random mappings of an nelement set to itself, Aldous and Pitman (1994) established a functional invariance principle, showing that many n!1 limit distributions can be described as distributions of suitable functions of reflecting Brownian bridge. To study nonuniform cases, in this paper we formulate a sampling invariance principle in terms of iterates of a fixed number of random elements. We show that the sampling invariance principle implies many, but not all, of the distributional limits implied by the functional invariance principle. We give direct verifications of the sampling invariance principle in two successive generalizations of the uniform case, to pmappings (where elements are mapped to i.i.d. nonuniform elements) and Pmappings (where elements are mapped according to a Markov matrix). We compare with parallel results in the simpler setting of random trees.
PoissonKingman Partitions
 of Lecture NotesMonograph Series
, 2002
"... This paper presents some general formulas for random partitions of a finite set derived by Kingman's model of random sampling from an interval partition generated by subintervals whose lengths are the points of a Poisson point process. These lengths can be also interpreted as the jumps of a subordin ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
This paper presents some general formulas for random partitions of a finite set derived by Kingman's model of random sampling from an interval partition generated by subintervals whose lengths are the points of a Poisson point process. These lengths can be also interpreted as the jumps of a subordinator, that is an increasing process with stationary independent increments. Examples include the twoparameter family of PoissonDirichlet models derived from the Poisson process of jumps of a stable subordinator. Applications are made to the random partition generated by the lengths of excursions of a Brownian motion or Brownian bridge conditioned on its local time at zero.
On the distribution of ranked heights of excursions of a Brownian bridge
 In preparation
, 1999
"... The distribution of the sequence of ranked maximum and minimum values attained during excursions of a standard Brownian bridge (B br t ; 0 t 1) is described. The height M br+ j of the jth highest maximum over a positive excursion of the bridge has the same distribution as M br+ 1 =j, where th ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
The distribution of the sequence of ranked maximum and minimum values attained during excursions of a standard Brownian bridge (B br t ; 0 t 1) is described. The height M br+ j of the jth highest maximum over a positive excursion of the bridge has the same distribution as M br+ 1 =j, where the distribution of M br+ 1 = sup 0t1 B br t is given by L'evy's formula P (M br+ 1 ? x) = e \Gamma2x 2 . The probability density of the height M br j of the jth highest maximum of excursions of the reflecting Brownian bridge (jB br t j; 0 t 1) is given by a modification of the known `function series for the density of M br 1 = sup 0t1 jB br t j. These results are obtained from a more general description of the distribution of ranked values of a homogeneous functional of excursions of the standardized bridge of a selfsimilar recurrent Markov process. Keywords: Brownian bridge, Brownian excursion, Brownian scaling, local time, selfsimilar recurrent Markov process, Bessel p...
Distributions of linear functionals of the two parameter Poisson–Dirichlet random measures
 ANN. APPL. PROBAB
, 2008
"... The present paper provides exact expressions for the probability distributions of linear functionals of the twoparameter Poisson– Dirichlet process PD(α,θ). We obtain distributional results yielding exact forms for density functions of these functionals. Moreover, several interesting integral ident ..."
Abstract

Cited by 8 (5 self)
 Add to MetaCart
The present paper provides exact expressions for the probability distributions of linear functionals of the twoparameter Poisson– Dirichlet process PD(α,θ). We obtain distributional results yielding exact forms for density functions of these functionals. Moreover, several interesting integral identities are obtained by exploiting a correspondence between the mean of a Poisson–Dirichlet process and the mean of a suitable Dirichlet process. Finally, some distributional characterizations in terms of mixture representations are proved. The usefulness of the results contained in the paper is demonstrated by means of some illustrative examples. Indeed, our formulae are relevant to occupation time phenomena connected with Brownian motion and more general Bessel processes, as well as to models arising in Bayesian nonparametric statistics.