Results 1  10
of
59
Multitask Learning
 MACHINE LEARNING
, 1997
"... Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task ..."
Abstract

Cited by 465 (7 self)
 Add to MetaCart
Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task can help other tasks be learned better. This paper reviews prior work on MTL, presents new evidence that MTL in backprop nets discovers task relatedness without the need of supervisory signals, and presents new results for MTL with knearest neighbor and kernel regression. In this paper we demonstrate multitask learning in three domains. We explain how multitask learning works, and show that there are many opportunities for multitask learning in real domains. We present an algorithm and results for multitask learning with casebased methods like knearest neighbor and kernel regression, and sketch an algorithm for multitask learning in decision trees. Because multitask learning works, can be applied to many different kinds of domains, and can be used with different learning algorithms, we conjecture there will be many opportunities for its use on realworld problems.
Learning Multiple Tasks with Kernel Methods
 Journal of Machine Learning Research
, 2005
"... Editor: John ShaweTaylor We study the problem of learning many related tasks simultaneously using kernel methods and regularization. The standard singletask kernel methods, such as support vector machines and regularization networks, are extended to the case of multitask learning. Our analysis sh ..."
Abstract

Cited by 156 (10 self)
 Add to MetaCart
Editor: John ShaweTaylor We study the problem of learning many related tasks simultaneously using kernel methods and regularization. The standard singletask kernel methods, such as support vector machines and regularization networks, are extended to the case of multitask learning. Our analysis shows that the problem of estimating many task functions with regularization can be cast as a single task learning problem if a family of multitask kernel functions we define is used. These kernels model relations among the tasks and are derived from a novel form of regularizers. Specific kernels that can be used for multitask learning are provided and experimentally tested on two real data sets. In agreement with past empirical work on multitask learning, the experiments show that learning multiple related tasks simultaneously using the proposed approach can significantly outperform standard singletask learning particularly when there are many related tasks but few data per task.
Regularized multitask learning
, 2004
"... This paper provides a foundation for multi–task learning using reproducing kernel Hilbert spaces of vector–valued functions. In this setting, the kernel is a matrix–valued function. Some explicit examples will be described which go beyond our earlier results in [7]. In particular, we characterize cl ..."
Abstract

Cited by 151 (1 self)
 Add to MetaCart
This paper provides a foundation for multi–task learning using reproducing kernel Hilbert spaces of vector–valued functions. In this setting, the kernel is a matrix–valued function. Some explicit examples will be described which go beyond our earlier results in [7]. In particular, we characterize classes of matrix– valued kernels which are linear and are of the dot product or the translation invariant type. We discuss how these kernels can be used to model relations between the tasks and present linear multi–task learning algorithms. Finally, we present a novel proof of the representer theorem for a minimizer of a regularization functional which is based on the notion of minimal norm interpolation. 1
Convex multitask feature learning
 Machine Learning
, 2007
"... Summary. We present a method for learning sparse representations shared across multiple tasks. This method is a generalization of the wellknown singletask 1norm regularization. It is based on a novel nonconvex regularizer which controls the number of learned features common across the tasks. We p ..."
Abstract

Cited by 139 (15 self)
 Add to MetaCart
Summary. We present a method for learning sparse representations shared across multiple tasks. This method is a generalization of the wellknown singletask 1norm regularization. It is based on a novel nonconvex regularizer which controls the number of learned features common across the tasks. We prove that the method is equivalent to solving a convex optimization problem for which there is an iterative algorithm which converges to an optimal solution. The algorithm has a simple interpretation: it alternately performs a supervised and an unsupervised step, where in the former step it learns taskspecific functions and in the latter step it learns commonacrosstasks sparse representations for these functions. We also provide an extension of the algorithm which learns sparse nonlinear representations using kernels. We report experiments on simulated and real data sets which demonstrate that the proposed method can both improve the performance relative to learning each task independently and lead to a few learned features common across related tasks. Our algorithm can also be used, as a special case, to simply select – not learn – a few common variables across the tasks 3.
Semiparametric Latent Factor Models
 Workshop on Artificial Intelligence and Statistics 10
, 2005
"... We propose a semiparametric model for regression problems involving multiple response variables. The model makes use of a set of Gaussian processes that are linearly mixed to capture dependencies that may exist among the response variables. We propose an efficient approximate inference scheme for th ..."
Abstract

Cited by 51 (6 self)
 Add to MetaCart
We propose a semiparametric model for regression problems involving multiple response variables. The model makes use of a set of Gaussian processes that are linearly mixed to capture dependencies that may exist among the response variables. We propose an efficient approximate inference scheme for this semiparametric model whose complexity is linear in the number of training data points. We present experimental results in the domain of multijoint
Bayes model averaging with selection of regressors
 Journal of the Royal Statistical Society. Series B, Statistical Methodology
, 2002
"... Summary. When a number of distinct models contend for use in prediction, the choice of a single model can offer rather unstable predictions. In regression, stochastic search variable selection with Bayesian model averaging offers a cure for this robustness issue but at the expense of requiring very ..."
Abstract

Cited by 33 (8 self)
 Add to MetaCart
Summary. When a number of distinct models contend for use in prediction, the choice of a single model can offer rather unstable predictions. In regression, stochastic search variable selection with Bayesian model averaging offers a cure for this robustness issue but at the expense of requiring very many predictors. Here we look at Bayes model averaging incorporating variable selection for prediction. This offers similar meansquare errors of prediction but with a vastly reduced predictor space. This can greatly aid the interpretation of the model. It also reduces the cost if measured variables have costs. The development here uses decision theory in the context of the multivariate general linear model. In passing, this reduced predictor space Bayes model averaging is contrasted with singlemodel approximations. A fast algorithm for updating regressions in the Markov chain Monte Carlo searches for posterior inference is developed, allowing many more variables than observations to be contemplated. We discuss the merits of absolute rather than proportionate shrinkage in regression, especially when there are more variables than observations. The methodology is illustrated on a set of spectroscopic data used for measuring the amounts of different sugars in an aqueous solution.
Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains
"... In the realm of multilabel classification (MLC), it has become an opinio communis that optimal predictive performance can only be achieved by learners that explicitly take label dependence into account. The goal of this paper is to elaborate on this postulate in a critical way. To this end, we forma ..."
Abstract

Cited by 25 (2 self)
 Add to MetaCart
In the realm of multilabel classification (MLC), it has become an opinio communis that optimal predictive performance can only be achieved by learners that explicitly take label dependence into account. The goal of this paper is to elaborate on this postulate in a critical way. To this end, we formalize and analyze MLC within a probabilistic setting. Thus, it becomes possible to look at the problem from the point of view of risk minimization and Bayes optimal prediction. Moreover, inspired by our probabilistic setting, we propose a new method for MLC that generalizes and outperforms another approach, called classifier chains, that was recently introduced in the literature. 1.
Flexible Latent Variable Models for MultiTask Learning
"... Summary. Given multiple prediction problems such as regression and classification, we are interested in a joint inference framework which can effectively borrow information among tasks to improve the prediction accuracy, especially when the number of training examples per problem is small. In this p ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
Summary. Given multiple prediction problems such as regression and classification, we are interested in a joint inference framework which can effectively borrow information among tasks to improve the prediction accuracy, especially when the number of training examples per problem is small. In this paper we propose a probabilistic framework which can support a set of latent variable models for different multitask learning scenarios. We show that the framework is a generalization of standard learning methods for single prediction problems and it can effectively model the shared structure among different prediction tasks. Furthermore, we present efficient algorithms for the empirical Bayes method as well as point estimation. Our experiments on both simulated datasets and real world classification datasets show the effectiveness of the proposed models in two evaluation settings: standard multitask learning setting and transfer learning setting. Key words: multitask learning, latent variable models, hierarchical Bayesian models, model selection, transfer learning 1
Nonlinear Partial Least Squares
, 1995
"... We propose a new nonparametric regression method for highdimensional data, nonlinear partial least squares (NLPLS). NLPLS is motivated by projectionbased regression methods, e.g., partial least squares (PLS), projection pursuit (PPR), and feedforward neural networks. The model takes the form of a ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
We propose a new nonparametric regression method for highdimensional data, nonlinear partial least squares (NLPLS). NLPLS is motivated by projectionbased regression methods, e.g., partial least squares (PLS), projection pursuit (PPR), and feedforward neural networks. The model takes the form of a composition of two functions. The first function in the composition projects the predictor variables onto a lowerdimensional curve or surface yielding scores, and the second predicts the response variable from the scores. We implement NLPLS with feedforward neural networks. NLPLS will often produce a more parsimonious model (fewer score vectors) than projectionbased methods, and the model is well suited for detecting outliers and future covariates requiring extrapolation. The scores are also shown to have useful interpretations. We also extend the model for multiple response variables and discuss situations when multiple response variab...