Results 1  10
of
36
Finding community structure in networks using the eigenvectors of matrices. Phys
 Rev. E
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 224 (0 self)
 Add to MetaCart
We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a new centrality measure that identifies those vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of realworld complex networks. I.
Comparing community structure identification
 Journal of Statistical Mechanics: Theory and Experiment
, 2005
"... ..."
Nunes Amaral. Functional cartography of complex metabolic networks
 Nature
, 2005
"... Highthroughput techniques are leading to an explosive growth in the size of biological databases and creating the opportunity to revolutionize our understanding of life and disease. Interpretation of these data remains, however, a major scientific challenge. Here, we propose a methodology that enab ..."
Abstract

Cited by 129 (3 self)
 Add to MetaCart
Highthroughput techniques are leading to an explosive growth in the size of biological databases and creating the opportunity to revolutionize our understanding of life and disease. Interpretation of these data remains, however, a major scientific challenge. Here, we propose a methodology that enables us to extract and display information contained in complex networks 1,2,3. Specifically, we demonstrate that one can (i) find functional modules 4,5 in complex networks, and (ii) classify nodes into universal roles according to their pattern of intra and intermodule connections. The method thus yields a “cartographic representation ” of complex networks. Metabolic networks 6,7,8 are among the most challenging biological networks and, arguably, the ones with more potential for immediate applicability 9. We use our method to analyze the metabolic networks of twelve organisms from three different superkingdoms. We find that, typically, 80 % of the nodes are only connected to other nodes within their respective modules, and that nodes with different roles are affected by different evolutionary constraints and pressures. Remarkably, we
Computing communities in large networks using random walks
 J. of Graph Alg. and App. bf
, 2004
"... Dense subgraphs of sparse graphs (communities), which appear in most realworld complex networks, play an important role in many contexts. Computing them however is generally expensive. We propose here a measure of similarities between vertices based on random walks which has several important advan ..."
Abstract

Cited by 94 (2 self)
 Add to MetaCart
Dense subgraphs of sparse graphs (communities), which appear in most realworld complex networks, play an important role in many contexts. Computing them however is generally expensive. We propose here a measure of similarities between vertices based on random walks which has several important advantages: it captures well the community structure in a network, it can be computed efficiently, and it can be used in an agglomerative algorithm to compute efficiently the community structure of a network. We propose such an algorithm, called Walktrap, which runs in time O(mn 2) and space O(n 2) in the worst case, and in time O(n 2 log n) and space O(n 2) in most realworld cases (n and m are respectively the number of vertices and edges in the input graph). Extensive comparison tests show that our algorithm surpasses previously proposed ones concerning the quality of the obtained community structures and that it stands among the best ones concerning the running time.
An Emulator Network for
 SIMD Machine Interconnection Networks, in: Proc. 6 th annual symposium on Computer architecture
, 1979
"... Fig. 0.1. [Proposed cover figure.] The largest connected component of a network of network scientists. This network was constructed based on the coauthorship of papers listed in two wellknown review articles [13,83] and a small number of additional papers that were added manually [86]. Each node is ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
Fig. 0.1. [Proposed cover figure.] The largest connected component of a network of network scientists. This network was constructed based on the coauthorship of papers listed in two wellknown review articles [13,83] and a small number of additional papers that were added manually [86]. Each node is colored according to community membership, which was determined using a leadingeigenvector spectral method followed by KernighanLin nodeswapping steps [64, 86, 107]. To determine community placement, we used the FruchtermanReingold graph visualization [45], a forcedirected layout method that is related to maximizing a quality function known as modularity [92]. To apply this method, we treated the communities as if they were themselves the nodes of a (significantly smaller) network with connections rescaled by intercommunity links. We then used the KamadaKawaii springembedding graph visualization algorithm [62] to place the nodes of each individual community (ignoring intercommunity links) and then to rotate and flip the communities for optimal placement (including intercommunity links). We gratefully acknowledge Amanda Traud for preparing this figure. COMMUNITIES IN NETWORKS
Multilevel algorithms for modularity clustering
"... been adapted to modularity clustering. Section 4 details the singlelevel and multilevel refinement heuristics, and Section 5.3 compares them experimentally. Because the effectiveness of (particularly multilevel) refinement may depend on the coarsening algorithm, Section 5.4 examines various combi ..."
Abstract

Cited by 25 (0 self)
 Add to MetaCart
been adapted to modularity clustering. Section 4 details the singlelevel and multilevel refinement heuristics, and Section 5.3 compares them experimentally. Because the effectiveness of (particularly multilevel) refinement may depend on the coarsening algorithm, Section 5.4 examines various combinations of coarsening and refinement heuristics. Section 6 compares public implementations and benchmark results of modularity clustering heuristics, without a restriction to coarsening and refinement algorithms. While this is one of the most extensive comparisons in the literature, it is far from exhaustive, because implementations and sufficient experimental results have not been published for some proposed heurisarXiv:0812.4073v1
Graph theory and networks in biology
 IET Systems Biology, 1:89 – 119
, 2007
"... In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss recent work on identifying and modelling the structure of biomolecular networks, as well as the application of centrality measures to interaction networks and research on the hierarch ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss recent work on identifying and modelling the structure of biomolecular networks, as well as the application of centrality measures to interaction networks and research on the hierarchical structure of such networks and network motifs. Work on the link between structural network properties and dynamics is also described, with emphasis on synchronization and disease propagation. 1
An experimental investigation of graph kernels on a collaborative recommendation task
 Proceedings of the 6th International Conference on Data Mining (ICDM 2006
, 2006
"... This paper presents a survey as well as a systematic empirical comparison of seven graph kernels and two related similarity matrices (simply referred to as graph kernels), namely the exponential diffusion kernel, the Laplacian exponential diffusion kernel, the von Neumann diffusion kernel, the regul ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
This paper presents a survey as well as a systematic empirical comparison of seven graph kernels and two related similarity matrices (simply referred to as graph kernels), namely the exponential diffusion kernel, the Laplacian exponential diffusion kernel, the von Neumann diffusion kernel, the regularized Laplacian kernel, the commutetime kernel, the randomwalkwithrestart similarity matrix, and finally, three graph kernels introduced in this paper: the regularized commutetime kernel, the Markov diffusion kernel, and the crossentropy diffusion matrix. The kernelonagraph approach is simple and intuitive. It is illustrated by applying the nine graph kernels to a collaborativerecommendation task and to a semisupervised classification task, both on several databases. The graph methods compute proximity measures between nodes that help study the structure of the graph. Our comparisons suggest that the regularized commutetime and the Markov diffusion kernels perform best, closely followed by the regularized Laplacian kernel. 1
Graph nodes clustering with the sigmoid commutetime kernel: A . . .
 DATA & KNOWLEDGE ENGINEERING
, 2009
"... ..."
The sumoverpaths covariance kernel: A novel covariance measure between nodes of a directed graph
 the IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2009
"... Abstract—This work introduces a linkbased covariance measure between the nodes of a weighted directed graph where a cost is associated to each arc. To this end, a probability distribution on the (usually infinite) countable set of paths through the graph is defined by minimizing the total expected ..."
Abstract

Cited by 9 (6 self)
 Add to MetaCart
Abstract—This work introduces a linkbased covariance measure between the nodes of a weighted directed graph where a cost is associated to each arc. To this end, a probability distribution on the (usually infinite) countable set of paths through the graph is defined by minimizing the total expected cost between all pairs of nodes while fixing the total relative entropy spread in the graph. This results in a Boltzmann distribution on the set of paths such that long (highcost) paths occur with a low probability while short (lowcost) paths occur with a high probability. The sumoverpaths (SoP) covariance measure between nodes is then defined according to this probability distribution: two nodes are considered as highly correlated if they often cooccur together on the same – preferably short – paths. The resulting covariance matrix between nodes (say n nodes in total) is a Gram matrix and therefore defines a valid kernel on the graph. It is obtained by inverting a n × n matrix depending on the costs assigned to the arcs. In the same spirit, a betweenness score is also defined, measuring the expected number of times a node occurs on a path. The proposed measures could be used for various graph mining tasks such as computing betweenness centrality, semisupervised classification of nodes, visualization, etc, as shown in the experimental section. Index Terms—Graph mining, kernel on a graph, shortest path, correlation measure, betweenness measure, resistance distance, commutetime distance, biased random walk, semisupervised classification.