Results 11  20
of
75
Strong Normalization of Explicit Substitutions via Cut Elimination in Proof Nets
, 1997
"... In this paper, we show the correspondence existing between normalization in calculi with explicit substitution and cut elimination in sequent calculus for Linear Logic, via Proof Nets. This correspondence allows us to prove that a typed version of the #xcalculus [30, 29] is strongly normalizing, as ..."
Abstract

Cited by 22 (4 self)
 Add to MetaCart
In this paper, we show the correspondence existing between normalization in calculi with explicit substitution and cut elimination in sequent calculus for Linear Logic, via Proof Nets. This correspondence allows us to prove that a typed version of the #xcalculus [30, 29] is strongly normalizing, as well as of all the calculi isomorphic to it such as # # [24], # s [19], # d [21], and # f [11]. In order to achieve this result, we introduce a new notion of reduction in Proof Nets: this extended reduction is still confluent and strongly normalizing, and is of interest of its own, as it correspond to more identifications of proofs in Linear Logic that differ by inessential details. These results show that calculi with explicit substitutions are really an intermediate formalism between lambda calculus and proof nets, and suggest a completely new way to look at the problems still open in the field of explicit substitutions.
Thunks and the λcalculus
 IN THE JOURNAL OF FUNCTIONAL PROGRAMMING. RS976 OLIVIER DANVY AND ULRIK
, 1997
"... Plotkin, in his seminal article Callbyname, callbyvalue and the λcalculus, formalized evaluation strategies and simulations using operational semantics and continuations. In particular, he showed how callbyname evaluation could be simulated under callbyvalue evaluation and vice versa. Si ..."
Abstract

Cited by 21 (9 self)
 Add to MetaCart
Plotkin, in his seminal article Callbyname, callbyvalue and the λcalculus, formalized evaluation strategies and simulations using operational semantics and continuations. In particular, he showed how callbyname evaluation could be simulated under callbyvalue evaluation and vice versa. Since Algol 60, however, callbyname is both implemented and simulated with thunks rather than with continuations. We recast
On The Algebraic Models Of Lambda Calculus
 Theoretical Computer Science
, 1997
"... . The variety (equational class) of lambda abstraction algebras was introduced to algebraize the untyped lambda calculus in the same way Boolean algebras algebraize the classical propositional calculus. The equational theory of lambda abstraction algebras is intended as an alternative to combinatory ..."
Abstract

Cited by 20 (11 self)
 Add to MetaCart
. The variety (equational class) of lambda abstraction algebras was introduced to algebraize the untyped lambda calculus in the same way Boolean algebras algebraize the classical propositional calculus. The equational theory of lambda abstraction algebras is intended as an alternative to combinatory logic in this regard since it is a firstorder algebraic description of lambda calculus, which allows to keep the lambda notation and hence all the functional intuitions. In this paper we show that the lattice of the subvarieties of lambda abstraction algebras is isomorphic to the lattice of lambda theories of the lambda calculus; for every variety of lambda abstraction algebras there exists exactly one lambda theory whose term algebra generates the variety. For example, the variety generated by the term algebra of the minimal lambda theory is the variety of all lambda abstraction algebras. This result is applied to obtain a generalization of the genericity lemma of finitary lambda calculus...
Strong Stability and the Incompleteness of Stable Models for λCalculus
 ANNALS OF PURE AND APPLIED LOGIC
, 1999
"... We prove that the class of stable models is incomplete with respect to pure λcalculus. More precisely, we show that no stable model has the same theory as the strongly stable version of Park's model. This incompleteness proof can be adapted to the continuous case, giving an incompleteness proo ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
We prove that the class of stable models is incomplete with respect to pure λcalculus. More precisely, we show that no stable model has the same theory as the strongly stable version of Park's model. This incompleteness proof can be adapted to the continuous case, giving an incompleteness proof for this case which is much simpler than the original proof by Honsell an Ronchi della Rocca. Moreover, we isolate a very simple finite set, F , of equations and inequations, which has neither a stable nor a continuous model, and which is included in Th(P fs ) and in T
Definability and full abstraction
 GDP FESTSCHRIFT
"... Game semantics has renewed denotational semantics. It offers among other things an attractive classification of programming features, and has brought a bunch of new definability results. In parallel, in the denotational semantics of proof theory, several full completeness results have been shown sin ..."
Abstract

Cited by 17 (2 self)
 Add to MetaCart
Game semantics has renewed denotational semantics. It offers among other things an attractive classification of programming features, and has brought a bunch of new definability results. In parallel, in the denotational semantics of proof theory, several full completeness results have been shown since the early nineties. In this note, we review the relation between definability and full abstraction, and we put a few old and recent results of this kind in perspective.
Games on graphs and sequentially realizable functionals
 In Logic in Computer Science 02
, 2002
"... We present a new category of games on graphs and derive from it a model for Intuitionistic Linear Logic. Our category has the computational flavour of concrete data structures but embeds fully and faithfully in an abstract games model. It differs markedly from the usual Intuitionistic Linear Logic s ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
We present a new category of games on graphs and derive from it a model for Intuitionistic Linear Logic. Our category has the computational flavour of concrete data structures but embeds fully and faithfully in an abstract games model. It differs markedly from the usual Intuitionistic Linear Logic setting for sequential algorithms. However, we show that with a natural exponential we obtain a model for PCF essentially equivalent to the sequential algorithms model. We briefly consider a more extensional setting and the prospects for a better understanding of the Longley Conjecture. 1
Calculi of Generalised βReduction and Explicit Substitutions: The TypeFree and Simply Typed Versions
, 1998
"... Extending the λcalculus with either explicit substitution or generalized reduction has been the subject of extensive research recently, and still has many open problems. This paper is the first investigation into the properties of a calculus combining both generalized reduction and explicit substit ..."
Abstract

Cited by 14 (7 self)
 Add to MetaCart
Extending the λcalculus with either explicit substitution or generalized reduction has been the subject of extensive research recently, and still has many open problems. This paper is the first investigation into the properties of a calculus combining both generalized reduction and explicit substitutions. We present a calculus, gs, that combines a calculus of explicit substitution, s, and a calculus with generalized reduction, g. We believe that gs is a useful extension of the  calculus, because it allows postponement of work in two different but complementary ways. Moreover, gs (and also s) satisfies properties desirable for calculi of explicit substitutions and generalized reductions. In particular, we show that gs preserves strong normalization, is a conservative extension of g, and simulates fireduction of g and the classical calculus. Furthermore, we study the simply typed versions of s and gs, and show that welltyped terms are strongly normalizing and that other properties,...
Sequentiality vs. Concurrency in Games and Logic
 Math. Structures Comput. Sci
, 2001
"... Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic. ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic.
A Relational Account of CallbyValue Sequentiality
 IN: PROC. 12TH SYMP. LOGIC IN COMPUTER SCIENCE
, 1999
"... We construct a model for FPC, a purely functional, sequential, callbyvalue language. The model is built from partial continuous functions, in the style of Plotkin, further constrained to be uniform with respect to a class of logical relations. We prove that the model is fully abstract. ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
We construct a model for FPC, a purely functional, sequential, callbyvalue language. The model is built from partial continuous functions, in the style of Plotkin, further constrained to be uniform with respect to a class of logical relations. We prove that the model is fully abstract.