Results 1  10
of
262
Constraint Networks
, 1992
"... Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expression ..."
Abstract

Cited by 1149 (43 self)
 Add to MetaCart
Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expressions. These have been successfully applied to diverse tasks such as design, diagnosis, truth maintenance, scheduling, spatiotemporal reasoning, logic programming and user interface. Constraint networks are graphical representations used to guide strategies for solving constraint satisfaction problems (CSPs).
Algorithms for ConstraintSatisfaction Problems: A Survey
, 1992
"... A large number of problems in AI and other areas of computer science can be viewed as special cases of the constraintsatisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, the planning of genetic experiments, an ..."
Abstract

Cited by 447 (0 self)
 Add to MetaCart
A large number of problems in AI and other areas of computer science can be viewed as special cases of the constraintsatisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, the planning of genetic experiments, and the satisfiability problem. A number of different approaches have been developed for solving these problems. Some of them use constraint propagation to simplify the original problem. Others use backtracking to directly search for possible solutions. Some are a combination of these two techniques. This article overviews many of these approaches in a tutorial fashion.
A sufficient condition for backtrackfree search
, 1982
"... A constraint satisfaction problem revolves finding values for a set of variables subject of a set of constraints (relations) on those variables Backtrack search is often used to solve such problems. A relationship involving the structure of the constraints i described which characterizes tosome deg ..."
Abstract

Cited by 297 (14 self)
 Add to MetaCart
A constraint satisfaction problem revolves finding values for a set of variables subject of a set of constraints (relations) on those variables Backtrack search is often used to solve such problems. A relationship involving the structure of the constraints i described which characterizes tosome degree the extreme case of mimmum backtracking (none) The relationship involves a concept called "width," which may provide some guidance in the representation f constraint satisfaction problems and the order m which they are searched The width concept is studied and applied, in particular, to constraints which form tree structures.
Principles of Constraint Programming
, 2000
"... Introduction 1.1 Preliminaries Constraint programming is an alternative approach to programming in which the programming process is limited to a generation of requirements (constraints) and a solution of these requirements by means of general or domain specific methods. The general methods are us ..."
Abstract

Cited by 260 (3 self)
 Add to MetaCart
Introduction 1.1 Preliminaries Constraint programming is an alternative approach to programming in which the programming process is limited to a generation of requirements (constraints) and a solution of these requirements by means of general or domain specific methods. The general methods are usually concerned with techniques of reducing the search space and with specific search methods. In contrast, the domain specific methods are usually provided in the form of special purpose algorithms or specialised packages, usually called constraint solvers. Typical examples of constraint solvers are: ffl a program that solves systems of linear equations, ffl a package for linear programming, ffl an implementation of the unification algorithm, a cornerstone of automated theorem proving. Problems that can be solved in a natural way by means of constraint programming are usually those for which efficient algorithms are
Algorithms for Distributed Constraint Satisfaction: A Review
 In CP
, 2000
"... . When multiple agents are in a shared environment, there usually exist constraints among the possible actions of these agents. A distributed constraint satisfaction problem (distributed CSP) is a problem to find a consistent combination of actions that satisfies these interagent constraints. Vario ..."
Abstract

Cited by 248 (11 self)
 Add to MetaCart
(Show Context)
. When multiple agents are in a shared environment, there usually exist constraints among the possible actions of these agents. A distributed constraint satisfaction problem (distributed CSP) is a problem to find a consistent combination of actions that satisfies these interagent constraints. Various application problems in multiagent systems can be formalized as distributed CSPs. This paper gives an overview of the existing research on distributed CSPs. First, we briefly describe the problem formalization and algorithms of normal, centralized CSPs. Then, we show the problem formalization and several MAS application problems of distributed CSPs. Furthermore, we describe a series of algorithms for solving distributed CSPs, i.e., the asynchronous backtracking, the asynchronous weakcommitment search, the distributed breakout, and distributed consistency algorithms. Finally,we showtwo extensions of the basic problem formalization of distributed CSPs, i.e., handling multiple local variables, and dealing with overconstrained problems. Keywords: Constraint Satisfaction, Search, distributed AI 1.
Contradicting Conventional Wisdom in Constraint Satisfaction
, 1994
"... . Constraint satisfaction problems have wide application in artificial intelligence. They involve finding values for problem variables where the values must be consistent in that they satisfy restrictions on which combinations of values are allowed. Two standard techniques used in solving such p ..."
Abstract

Cited by 232 (12 self)
 Add to MetaCart
(Show Context)
. Constraint satisfaction problems have wide application in artificial intelligence. They involve finding values for problem variables where the values must be consistent in that they satisfy restrictions on which combinations of values are allowed. Two standard techniques used in solving such problems are backtrack search and consistency inference. Conventional wisdom in the constraint satisfaction community suggests: 1) using consistency inference as preprocessing before search to prune values from consideration reduces subsequent search effort and 2) using consistency inference during search to prune values from consideration is best done at the limited level embodied in the forward checking algorithm. We present evidence contradicting both pieces of conventional wisdom, and suggesting renewed consideration of an approach which fully maintains arc consistency during backtrack search. 1 Introduction Constraint satisfaction problems (CSPs) involve finding values for prob...
A Generic ArcConsistency Algorithm and its Specializations
 Artificial Intelligence
, 1992
"... Consistency techniques have been studied extensively in the past as a way of tackling constraint satisfaction problems (CSP). In particular, various arcconsistency algorithms have been proposed, originating from Waltz's filtering algorithm [26] and culminating in the optimal algorithm AC4 of ..."
Abstract

Cited by 213 (8 self)
 Add to MetaCart
(Show Context)
Consistency techniques have been studied extensively in the past as a way of tackling constraint satisfaction problems (CSP). In particular, various arcconsistency algorithms have been proposed, originating from Waltz's filtering algorithm [26] and culminating in the optimal algorithm AC4 of Mohr and Henderson [15]. AC4 runs in O(ed 2 ) in the worst case, where e is the number of arcs (or constraints) and d is the size of the largest domain. Being applicable to the whole class of (binary) CSP, these algorithms do not take into account the semantics of constraints. In this paper, we present a new generic arcconsistency algorithm AC5. This algorithm is parametrized on two specified procedures and can be instantiated to reduce to AC3 and AC4. More important, AC5 can be instantiated to produce an O(ed) algorithm for a number of important classes of constraints: functional, antifunctional, monotonic and their generalization to (functional, antifunctional, and monotonic) piecewise constraints. We also show that AC5 has an important application in constraint logic programming over finite domains [23]. The kernel of the constraint solver for such a programming language is an arcconsistency algorithm for a set of basic constraints. We prove that AC5, in conjunction with node consistency, provides a decision procedure for these constraints running in time O(ed).
SemiringBased Constraint Satisfaction and Optimization
 JOURNAL OF THE ACM
, 1997
"... We introduce a general framework for constraint satisfaction and optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. The framework is based on a semiring structure, where the set of the semiring specifies the values to be asso ..."
Abstract

Cited by 207 (26 self)
 Add to MetaCart
(Show Context)
We introduce a general framework for constraint satisfaction and optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. The framework is based on a semiring structure, where the set of the semiring specifies the values to be associated with each tuple of values of the variable domain, and the two semiring operations (1 and 3) model constraint projection and combination respectively. Local consistency algorithms, as usually used for classical CSPs, can be exploited in this general framework as well, provided that certain conditions on the semiring operations are satisfied. We then show how this framework can be used to model both old and new constraint solving and optimization schemes, thus allowing one to both formally justify many informally taken choices in existing schemes, and to prove that local consistency techniques can be used also in newly defined schemes.
Reasoning about Temporal Relations: A Maximal Tractable Subclass of Allen's Interval Algebra
 Journal of the ACM
, 1995
"... We introduce a new subclass of Allen's interval algebra we call "ORDHorn subclass," which is a strict superset of the "pointisable subclass." We prove that reasoning in the ORDHorn subclass is a polynomialtime problem and show that the pathconsistency method is sufficient ..."
Abstract

Cited by 195 (8 self)
 Add to MetaCart
(Show Context)
We introduce a new subclass of Allen's interval algebra we call "ORDHorn subclass," which is a strict superset of the "pointisable subclass." We prove that reasoning in the ORDHorn subclass is a polynomialtime problem and show that the pathconsistency method is sufficient for deciding satisfiability. Further, using an extensive machinegenerated case analysis, we show that the ORDHorn subclass is a maximal tractable subclass of the full algebra (assuming<F NaN> P6=NP). In fact, it is the unique greatest tractable subclass amongst the subclasses that contain all basic relations. This work has been supported by the German Ministry for Research and Technology (BMFT) under grant ITW 8901 8 as part of the WIP project and under grant ITW 9201 as part of the TACOS project. 1 1 Introduction Temporal information is often conveyed qualitatively by specifying the relative positions of time intervals such as ". . . point to the figure while explaining the performance of the system . . . "...