Results 1  10
of
23
Making Data Structures Persistent
, 1989
"... This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any t ..."
Abstract

Cited by 250 (6 self)
 Add to MetaCart
This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any time. We develop simple, systematic, and effiient techniques for making linked data structures persistent. We use our techniques to devise persistent forms of binary search trees with logarithmic access, insertion, and deletion times and O(1) space bounds for insertion and deletion.
Two simplified algorithms for maintaining order in a list
 PROCEEDINGS OF THE 10TH ANNUAL EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA
, 2002
"... In the OrderMaintenance Problem, the objective is to maintain a total order subject to insertions, deletions, and precedence queries. Known optimal solutions, due to Dietz and Sleator, are complicated. We present new algorithms that match the bounds of Dietz and Sleator. Our solutions are simple, ..."
Abstract

Cited by 62 (9 self)
 Add to MetaCart
In the OrderMaintenance Problem, the objective is to maintain a total order subject to insertions, deletions, and precedence queries. Known optimal solutions, due to Dietz and Sleator, are complicated. We present new algorithms that match the bounds of Dietz and Sleator. Our solutions are simple, and we present experimental evidence that suggests that they are superior in practice.
Improved Labeling Scheme for Ancestor Queries
, 2001
"... We present a labeling scheme for rooted trees that supports ancestor queries. Given a tree, the scheme assigns to each node a label which is a binary string. Given the labels of any two nodes u and v, it can in constant time be determined whether u is ancestor to v alone from these labels. For tr ..."
Abstract

Cited by 48 (7 self)
 Add to MetaCart
We present a labeling scheme for rooted trees that supports ancestor queries. Given a tree, the scheme assigns to each node a label which is a binary string. Given the labels of any two nodes u and v, it can in constant time be determined whether u is ancestor to v alone from these labels. For trees of size n our scheme assigns labels of size bounded by log n + O( p log n) bits to each node. This improves a recent result of Abiteboul, Kaplan and Milo at SODA'01, where a labeling scheme with labels of size 3=2 log n+ O(log log n) was presented. The problem is among other things motivated in connection with ecient representation of information for XMLbased search engines for the internet.
Dynamic LCA queries on trees
 SIAM Journal on Computing
, 1999
"... Abstract. We show how to maintain a data structure on trees which allows for the following operations, all in worstcase constant time: 1. insertion of leaves and internal nodes, 2. deletion of leaves, 3. deletion of internal nodes with only one child, 4. determining the least common ancestor of any ..."
Abstract

Cited by 43 (0 self)
 Add to MetaCart
Abstract. We show how to maintain a data structure on trees which allows for the following operations, all in worstcase constant time: 1. insertion of leaves and internal nodes, 2. deletion of leaves, 3. deletion of internal nodes with only one child, 4. determining the least common ancestor of any two nodes. We also generalize the Dietz–Sleator “cupfilling ” scheduling methodology, which may be of independent interest.
On Labeling Schemes for the Semantic Web
, 2003
"... This paper focuses on the optimization of the navigation through voluminous subsumption hierarchies of topics employed by Portal Catalogs like Netscape Open Directory (ODP). We advocate for the use of labeling schemes for modeling these hierarchies in order to efficiently answer queries such as subs ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
This paper focuses on the optimization of the navigation through voluminous subsumption hierarchies of topics employed by Portal Catalogs like Netscape Open Directory (ODP). We advocate for the use of labeling schemes for modeling these hierarchies in order to efficiently answer queries such as subsumption check, descendants, ancestors or nearest common ancestor, which usually require costly transitive closure computations. We rst give a qualitative comparison of three main families of schemes, namely bit vector, prefix and interval based schemes. We then show that two labeling schemes are good candidates for an efficient implementation of label querying using standard relational DBMS, namely, the Dewey Prefix scheme [6] and an Interval scheme by Agrawal, Borgida and Jagadish [1]. We compare their storage and query evaluation performance for the 16 ODP hierarchies using the PostgreSQL engine.
Scanning and traversing: maintaining data for traversals in a memory hierarchy
 In Proceedings of the 10th Annual European Symposium on Algorithms
, 2002
"... Abstract. We study the problem of maintaining a dynamic ordered set subject to insertions, deletions, and traversals of k consecutive elements. This problem is trivially solved on a RAM and on a simple twolevel memory hierarchy. We explore this traversal problem on more realistic memory models: the ..."
Abstract

Cited by 32 (11 self)
 Add to MetaCart
Abstract. We study the problem of maintaining a dynamic ordered set subject to insertions, deletions, and traversals of k consecutive elements. This problem is trivially solved on a RAM and on a simple twolevel memory hierarchy. We explore this traversal problem on more realistic memory models: the cacheoblivious model, which applies to unknown and multilevel memory hierarchies, and sequentialaccess models, where sequential block transfers are less expensive than random block transfers. 1
Confluently Persistent Deques via DataStructural Bootstrapping
 J. of Algorithms
, 1993
"... We introduce datastructural bootstrapping, a technique to design data structures recursively, and use it to design confluently persistent deques. Our data structure requires O(log 3 k) worstcase time and space per deletion, where k is the total number of deque operations, and constant worstcase t ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
We introduce datastructural bootstrapping, a technique to design data structures recursively, and use it to design confluently persistent deques. Our data structure requires O(log 3 k) worstcase time and space per deletion, where k is the total number of deque operations, and constant worstcase time and space for other operations. Further, the data structure allows a purely functional implementation, with no side effects. This improves a previous result of Driscoll, Sleator, and Tarjan. 1 An extended abstract of this paper was presented at the 4th ACMSIAM Symposium on Discrete Algorithms, 1993. 2 Supported by a Fannie and John Hertz Foundation fellowship, National Science Foundation Grant No. CCR8920505, and the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) under NSFSTC8809648. 3 Also affiliated with NEC Research Institute, 4 Independence Way, Princeton, NJ 08540. Research at Princeton University partially supported by the National Science Foundatio...
A New Method for Functional Arrays
 Journal of Functional Programming
, 1997
"... Arrays are probably the most widely used data structure in imperative programming languages, yet functional languages typically only support arrays in a limited manner, or prohibit them entirely. This is not too surprising, since most other mutable data structures, such as trees, have elegant immuta ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
Arrays are probably the most widely used data structure in imperative programming languages, yet functional languages typically only support arrays in a limited manner, or prohibit them entirely. This is not too surprising, since most other mutable data structures, such as trees, have elegant immutable analogues in the functional world, whereas arrays do not. Previous attempts at addressing the problem have suffered from one of three weaknesses, either that they don't support arrays as a persistent data structure (unlike the functional analogues of other imperative data structures), or that the range of operations is too restrictive to support some common array algorithms efficiently, or that they have performance problems. Our technique provides arrays as a true functional analogue of imperative arrays with the properties that functional programmers have come to expect from their data structures. To efficiently support array algorithms from the imperative world, we provide O(1) operations for singlethreaded array use. Fully persistent array use can also be provided at O(1) amortized cost, provided that the algorithm satisfies a simple requirement as to uniformity of access. For those algorithms which do not access the array uniformly or singlethreadedly, array reads or updates take at most O(log n) amortized time, where n is the size of the array. Experimental results indicate that the overheads of our technique are acceptable in practice for many applications.
Approximate Indexed Lists
 Journal of Algorithms
, 1998
"... Let the position of a list element in a list be the number of elements preceding it plus one. An indexed list supports the following operations on a list: Insert; delete; return the position of an element; and return the element at a certain position. The order in which the elements appear in the li ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
Let the position of a list element in a list be the number of elements preceding it plus one. An indexed list supports the following operations on a list: Insert; delete; return the position of an element; and return the element at a certain position. The order in which the elements appear in the list is completely determined by where the insertions take place; we do not require the presence of any keys that induce the ordering. We consider approximate indexed lists, and show that a tiny relaxation in precision of the query operations allows a considerable improvement in time complexity. The new data structure has applications in two other problems; namely, list labeling and subset rank. 1 Introduction An indexed list [5] is a list abstract data type that supports the following operations: Insert(x; y): Insert list element y immediately after list element x, which may be a list header; Delete(x): Delete list element x; Pos(x): Return the position of list element x, that is, one plu...
Optimizing Taxonomic Semantic Web Queries Using Labeling Schemes
 Journal of Web Sematics 1, Issue
, 2004
"... This paper focuses on the optimization of the navigation through voluminous subsumption hierarchies of topics employed byPortal Catalogs like Netscape Open Directory (ODP). We advocate for the use of labeling schemes for modeling these hierarchies in order to efficiently answer queries such as su ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
This paper focuses on the optimization of the navigation through voluminous subsumption hierarchies of topics employed byPortal Catalogs like Netscape Open Directory (ODP). We advocate for the use of labeling schemes for modeling these hierarchies in order to efficiently answer queries such as subsumption check, descendants, ancestors or nearest common ancestor, which usually require costly transitive closure computations. Wefirstgive a qualitative comparison of three main families of schemes, namely bit vector, prefix and interval based schemes. We then show that two labeling schemes are good candidates for an efficientimplementation of label querying using standard relational DBMS, namely the Dewey Prefix scheme and an Interval scheme by Agrawal, Borgida and Jagadish. We compare their storage and query evaluation performance for the 16 ODP hierarchies using the PostgreSQL engine.