Results 1  10
of
75
Bypassing the embedding: Algorithms for lowdimensional metrics
 In Proceedings of the 36th ACM Symposium on the Theory of Computing (STOC
, 2004
"... The doubling dimension of a metric is the smallest k such that any ball of radius 2r can be covered using 2 k balls of radius r. This concept for abstract metrics has been proposed as a natural analog to the dimension of a Euclidean space. If we could embed metrics with low doubling dimension into l ..."
Abstract

Cited by 66 (4 self)
 Add to MetaCart
(Show Context)
The doubling dimension of a metric is the smallest k such that any ball of radius 2r can be covered using 2 k balls of radius r. This concept for abstract metrics has been proposed as a natural analog to the dimension of a Euclidean space. If we could embed metrics with low doubling dimension into low dimensional Euclidean spaces, they would inherit several algorithmic and structural properties of the Euclidean spaces. Unfortunately however, such a restriction on dimension does not suffice to guarantee embeddibility in a normed space. In this paper we explore the option of bypassing the embedding. In particular we show the following for low dimensional metrics: • Quasipolynomial time (1+ɛ)approximation algorithm for various optimization problems such as TSP, kmedian and facility location. • (1 + ɛ)approximate distance labeling scheme with optimal label length. • (1+ɛ)stretch polylogarithmic storage routing scheme.
Distance Estimation and Object Location via Rings of Neighbors
 In 24 th Annual ACM Symposium on Principles of Distributed Computing (PODC
, 2005
"... We consider four problems on distance estimation and object location which share the common flavor of capturing global information via informative node labels: lowstretch routing schemes [47], distance labeling [24], searchable small worlds [30], and triangulationbased distance estimation [33]. Fo ..."
Abstract

Cited by 66 (5 self)
 Add to MetaCart
We consider four problems on distance estimation and object location which share the common flavor of capturing global information via informative node labels: lowstretch routing schemes [47], distance labeling [24], searchable small worlds [30], and triangulationbased distance estimation [33]. Focusing on metrics of low doubling dimension, we approach these problems with a common technique called rings of neighbors, which refers to a sparse distributed data structure that underlies all our constructions. Apart from improving the previously known bounds for these problems, our contributions include extending Kleinberg’s small world model to doubling metrics, and a short proof of the main result in Chan et al. [14]. Doubling dimension is a notion of dimensionality for general metrics that has recently become a useful algorithmic concept in the theoretical computer science literature. 1
Routing in networks with low doubling dimension
 In 26 th International Conference on Distributed Computing Systems (ICDCS). IEEE Computer
, 2006
"... This paper studies compact routing schemes for networks with low doubling dimension. Two variants are explored, nameindependent routing and labeled routing. The key results obtained for this model are the following. First, we provide the first nameindependent solution. Specifically, we achieve con ..."
Abstract

Cited by 64 (8 self)
 Add to MetaCart
(Show Context)
This paper studies compact routing schemes for networks with low doubling dimension. Two variants are explored, nameindependent routing and labeled routing. The key results obtained for this model are the following. First, we provide the first nameindependent solution. Specifically, we achieve constant stretch and polylogarithmic storage. Second, we obtain the first truly scalefree solutions, namely, the network’s aspect ratio is not a factor in the stretch. Scalefree schemes are given for three problem models: nameindependent routing on graphs, labeled routing on metric spaces, and labeled routing on graphs. Third, we prove a lower bound requiring linear storage for stretch < 3 schemes. This has the important ramification of separating for the first time the nameindependent problem model from the labeled model for these networks, since compact stretch1+ε labeled schemes are known to be possible.
Compact NameIndependent Routing with Minimum Stretch
 In Proceedings of the 16th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2004
, 2004
"... Given a weighted undirected network with arbitrary node names, we present a compact routing scheme, using a O(√n) space routing table at each node, and routing along paths of stretch 3, that is, at most thrice as long as the shortest paths. This is optimal in a very strong sense. It is kno ..."
Abstract

Cited by 64 (12 self)
 Add to MetaCart
(Show Context)
Given a weighted undirected network with arbitrary node names, we present a compact routing scheme, using a O(&radic;n) space routing table at each node, and routing along paths of stretch 3, that is, at most thrice as long as the shortest paths. This is optimal in a very strong sense. It is known that no compact routing using o(n) space per node can route with stretch below 3. Also, it is known that any stretch below 5 requires &Omega;(&radic;n) space per node.
On Labeling Schemes for the Semantic Web
, 2003
"... This paper focuses on the optimization of the navigation through voluminous subsumption hierarchies of topics employed by Portal Catalogs like Netscape Open Directory (ODP). We advocate for the use of labeling schemes for modeling these hierarchies in order to efficiently answer queries such as subs ..."
Abstract

Cited by 40 (7 self)
 Add to MetaCart
This paper focuses on the optimization of the navigation through voluminous subsumption hierarchies of topics employed by Portal Catalogs like Netscape Open Directory (ODP). We advocate for the use of labeling schemes for modeling these hierarchies in order to efficiently answer queries such as subsumption check, descendants, ancestors or nearest common ancestor, which usually require costly transitive closure computations. We rst give a qualitative comparison of three main families of schemes, namely bit vector, prefix and interval based schemes. We then show that two labeling schemes are good candidates for an efficient implementation of label querying using standard relational DBMS, namely, the Dewey Prefix scheme [6] and an Interval scheme by Agrawal, Borgida and Jagadish [1]. We compare their storage and query evaluation performance for the 16 ODP hierarchies using the PostgreSQL engine.
Compact Routing on Euclidian Metrics
, 2004
"... We consider the problem of designing a compact communication network that supports e#cient routing in an Euclidean plane. Our network design and routing scheme achieves 1+# stretch, logarithmic diameter, and constant out degree. This improves upon the best known result so far that requires a logari ..."
Abstract

Cited by 29 (4 self)
 Add to MetaCart
(Show Context)
We consider the problem of designing a compact communication network that supports e#cient routing in an Euclidean plane. Our network design and routing scheme achieves 1+# stretch, logarithmic diameter, and constant out degree. This improves upon the best known result so far that requires a logarithmic outdegree. Furthermore, our scheme is asymptotically optimal in Euclidean metrics whose diameter is polynomial.
Labeling schemes for small distances in trees
 In Proceedings of the ACMSIAM Symposium on Discrete Algorithms
, 2003
"... Abstract. We consider labeling schemes for trees, supporting various relationships between nodes at small distance. For instance, we show that given a tree T and an integer k we can assign labels to each node of T such that given the label of two nodes we can decide, from these two labels alone, if ..."
Abstract

Cited by 28 (2 self)
 Add to MetaCart
(Show Context)
Abstract. We consider labeling schemes for trees, supporting various relationships between nodes at small distance. For instance, we show that given a tree T and an integer k we can assign labels to each node of T such that given the label of two nodes we can decide, from these two labels alone, if the distance between v and w is at most k and if so compute it. For trees with n nodes and k ≥ 2, we give a lower bound on the maximum label length of log n + Ω(log log n) bits, and for constant k, we give an upper bound of log n+O(log log n). Bounds for ancestor, sibling, connectivity and bi and triconnectivity labeling schemes are also presented. Key words. Labeling schemes, trees. AMS subject classifications. 68R10, 68W01
Towards small world emergence
 In Proceedings of 18th ACM Symposium on Parallelism in Algorithms and Architectures
, 2006
"... We investigate the problem of optimizing the routing performances of a virtual network by adding extra random links. Our asynchronous and distributed algorithm ensures, by adding a single extra link per node, that the resulting network is a navigable small world, i.e., in which greedy routing, using ..."
Abstract

Cited by 21 (3 self)
 Add to MetaCart
(Show Context)
We investigate the problem of optimizing the routing performances of a virtual network by adding extra random links. Our asynchronous and distributed algorithm ensures, by adding a single extra link per node, that the resulting network is a navigable small world, i.e., in which greedy routing, using the distance in the original network, computes paths of polylogarithmic length between any pair of nodes with probability 1 − O(1/n). Previously known small world augmentation processes require the global knowledge of the network and centralized computations, which is unrealistic for large decentralized networks. Our algorithm, based on a careful multilayer sampling of the nodes and the construction of a light overlay network, bypasses these limitations. For bounded growth graphs, i.e., graphs where, for any node u and any radius r the number of nodes within distance 2r from u is at most a constant times the number of nodes within distance r, our augmentation process proceeds with high probability in O(log n log D) communication rounds, with O(log n log D) messages of size O(log n) bits sent per node and requiring only O(log n log D) bit space in each node, where n is the number of nodes, and D the diameter. In particular, with the only knowledge of original distances, greedy routing computes,
Compact Routing for Graphs Excluding a Fixed Minor (Extended Abstract)
, 2005
"... This paper concerns compact routing schemes with arbitrary node names. We present a compact nameindependent routing scheme for unweighted networks with n nodes excluding a fixed minor. For any fixed minor, the scheme, constructible in polynomial time, has constant stretch factor and requires routin ..."
Abstract

Cited by 20 (10 self)
 Add to MetaCart
This paper concerns compact routing schemes with arbitrary node names. We present a compact nameindependent routing scheme for unweighted networks with n nodes excluding a fixed minor. For any fixed minor, the scheme, constructible in polynomial time, has constant stretch factor and requires routing tables with polylogarithmic number of bits at each node. For shortestpath labeled routing scheme in planar graphs, we prove an Ω(n ɛ) space lower bound for some constant ɛ>0. This lower bound holds even for bounded degree triangulations, and is optimal for polynomially weighted planar graphs (ɛ =1/2).
Distributed Verification of Minimum Spanning Trees
 Proc. 25th Annual Symposium on Principles of Distributed Computing
, 2006
"... The problem of verifying a Minimum Spanning Tree (MST) was introduced by Tarjan in a sequential setting. Given a graph and a tree that spans it, the algorithm is required to check whether this tree is an MST. This paper investigates the problem in the distributed setting, where the input is given in ..."
Abstract

Cited by 19 (17 self)
 Add to MetaCart
(Show Context)
The problem of verifying a Minimum Spanning Tree (MST) was introduced by Tarjan in a sequential setting. Given a graph and a tree that spans it, the algorithm is required to check whether this tree is an MST. This paper investigates the problem in the distributed setting, where the input is given in a distributed manner, i.e., every node “knows ” which of its own emanating edges belong to the tree. Informally, the distributed MST verification problem is the following. Label the vertices of the graph in such a way that for every node, given (its own label and) the labels of its neighbors only, the node can detect whether these edges are indeed its MST edges. In this paper we present such a verification scheme with a maximum label size of O(log n log W), where n is the number of nodes and W is the largest weight of an edge. We also give a matching lower bound of Ω(log n log W) (except when W ≤ log n). Both our bounds improve previously known bounds for the problem. Our techniques (both for the lower bound and for the upper bound) may indicate a strong relation between the fields of proof labeling schemes and implicit labeling schemes. For the related problem of tree sensitivity also presented by Tarjan, our method yields rather efficient schemes for both the distributed and the sequential settings.