Results 1  10
of
31
Optimization Flow Control, I: Basic Algorithm and Convergence
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract

Cited by 518 (55 self)
 Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In this system sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial and timevarying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly timevarying environment.
A Duality Model of TCP and Queue Management Algorithms
 IEEE/ACM Trans. on Networking
, 2002
"... We propose a duality model of congestion control and apply it to understand the equilibrium properties of TCP and active queue management schemes. Congestion control is the interaction of source rates with certain congestion measures at network links. The basic idea is to regard source rates as p ..."
Abstract

Cited by 239 (34 self)
 Add to MetaCart
We propose a duality model of congestion control and apply it to understand the equilibrium properties of TCP and active queue management schemes. Congestion control is the interaction of source rates with certain congestion measures at network links. The basic idea is to regard source rates as primal variables and congestion measures as dual variables, and congestion control as a distributed primaldual algorithm carried out over the Internet to maximize aggregate utility subject to capacity constraints. The primal iteration is carried out by TCP algorithms such as Reno or Vegas, and the dual iteration is carried out by queue management such as DropTail, RED or REM. We present these algorithms and their generalizations, derive their utility functions, and study their interaction.
A New Approach to Service Provisioning in ATM Networks
 IEEE/ACM Transactions on Networking
, 1993
"... We formulate and solve a problem of allocating resources among competing services differentiated by user traffic characteristics and maximum endtoend delay. The solution leads to an alternative approach to service provisioning in an ATM network, in which the network offers directly for rent its ba ..."
Abstract

Cited by 78 (8 self)
 Add to MetaCart
We formulate and solve a problem of allocating resources among competing services differentiated by user traffic characteristics and maximum endtoend delay. The solution leads to an alternative approach to service provisioning in an ATM network, in which the network offers directly for rent its bandwidth and buffers and users purchase freely resources to meet their desired quality. Users make their decisions based on their own traffic parameters and delay requirements and the network sets prices for those resources. The procedure is iterative in that the network periodically adjusts prices based on monitored user demand, and is decentralized in that only local information is needed for individual users to determine resource requests. We derive network's adjustment scheme and users' decision rule and establish their optimality. Since our approach does not require the network to know user traffic and delay parameters, it does not require traffic policing on the part of the network. 1 I...
Crosslayer optimization in TCP/IP networks
 IEEE/ACM Transactions on Networking
, 2005
"... Abstract — TCP–AQM can be interpreted as distributed primaldual algorithms to maximize aggregate utility over source rates. We show that an equilibrium of TCP/IP, if exists, maximizes aggregate utility over both source rates and routes, provided congestion prices are used as link costs. An equilibr ..."
Abstract

Cited by 53 (8 self)
 Add to MetaCart
Abstract — TCP–AQM can be interpreted as distributed primaldual algorithms to maximize aggregate utility over source rates. We show that an equilibrium of TCP/IP, if exists, maximizes aggregate utility over both source rates and routes, provided congestion prices are used as link costs. An equilibrium exists if and only if this utility maximization problem and its Lagrangian dual have no duality gap. In this case, TCP/IP incurs no penalty in not splitting traffic across multiple paths. Such an equilibrium, however, can be unstable. It can be stabilized by adding a static component to link cost, but at the expense of a reduced utility in equilibrium. If link capacities are optimally provisioned, however, pure static routing, which is necessarily stable, is sufficient to maximize utility. Moreover singlepath routing again achieves the same utility as multipath routing at optimality. Index Terms — Utility optimization, congestion control, TCP
An Enhanced Random Early Marking Algorithm for Internet Flow Control, Infocom
, 2000
"... Abstruct We propose earlier an optimization based flow control ..."
Abstract

Cited by 45 (5 self)
 Add to MetaCart
Abstruct We propose earlier an optimization based flow control
Layering as optimization decomposition
 PROCEEDINGS OF THE IEEE
, 2007
"... Network protocols in layered architectures have historically been obtained on an ad hoc basis, and many of the recent crosslayer designs are conducted through piecemeal approaches. They may instead be holistically analyzed and systematically designed as distributed solutions to some global optimiza ..."
Abstract

Cited by 39 (17 self)
 Add to MetaCart
Network protocols in layered architectures have historically been obtained on an ad hoc basis, and many of the recent crosslayer designs are conducted through piecemeal approaches. They may instead be holistically analyzed and systematically designed as distributed solutions to some global optimization problems. This paper presents a survey of the recent efforts towards a systematic understanding of “layering ” as “optimization decomposition”, where the overall communication network is modeled by a generalized Network Utility Maximization (NUM) problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems. There can be many alternative decompositions, each leading to a different layering architecture. This paper summarizes the current status of horizontal decomposition into distributed computation and vertical decomposition into functional modules such as congestion control, routing, scheduling, random access, power control, and channel coding. Key messages and methods arising from many recent work are listed, and open issues discussed. Through case studies, it is illustrated how “Layering as Optimization Decomposition” provides a common language to think
Optimization Flow Control with Online Measurement or Multiple Paths
 In Proceedings of the ITC
, 1999
"... We proposed earlier an optimization approach to reactive flow control where the objective of the control is to maximize the total utility of all sources over their transmission rates. The control mechanism is derived as a gradient projection algorithm to solve the dual problem. In this paper we cons ..."
Abstract

Cited by 28 (10 self)
 Add to MetaCart
We proposed earlier an optimization approach to reactive flow control where the objective of the control is to maximize the total utility of all sources over their transmission rates. The control mechanism is derived as a gradient projection algorithm to solve the dual problem. In this paper we consider two extensions to the basic algorithm. First, the basic algorithm requires communication from sources of their rates to links in their paths in order to carry out the gradient projection algorithm. We prove that it is possible for the links to estimate the gradient using only local information, thus eliminating the need for explicit communication. Second, the basic algorithm assumes that each source is served by a single path. We generalize the model to the case where there are multiple paths between a sourcedestination pair. This allows flow control and routing to be jointly optimized. 1 Introduction We have proposed previously an optimization approach to flow control where the cont...
Optimization Flow Control with NewtonLike Algorithm
 Journal of Telecommunication Systems
, 2000
"... this paper we extend the algorithm to a scaled gradient projection. The diagonal scaling matrix approximates the diagonal terms of the Hessian and can be computed at individual links using the same information required by the unscaled algorithm. We prove the convergence of the scaled algorithm an ..."
Abstract

Cited by 22 (6 self)
 Add to MetaCart
this paper we extend the algorithm to a scaled gradient projection. The diagonal scaling matrix approximates the diagonal terms of the Hessian and can be computed at individual links using the same information required by the unscaled algorithm. We prove the convergence of the scaled algorithm and present simulation results that illustrate its superiority to the unscaled algorithm. Keywords: Flow control, optimization flow control, Newton algorithm 1. Introduction We have proposed previously an optimization approach to flow control where the control mechanism is derived as a gradient projection algorithm to solve the dual of a global optimization problem [18,22]. An important feature is that the problem is decomposed into simple algorithms that are executed at individual links and sources using `local' information. It is well known that Newton method, where the gradient is scaled by the inverse of the second derivative matrix, typically enjoys a m
A Survey of Maneuvering Target Tracking  Part V: MultipleModel Methods
, 2003
"... ... without addressing the socalled measurementorigin uncertainty. Part I and Part II deal with target motion models. Part III covers measurement models and associated techniques. Part IV is concerned with tracking techniques that are based on decisions regarding target maneuvers. This part surv ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
... without addressing the socalled measurementorigin uncertainty. Part I and Part II deal with target motion models. Part III covers measurement models and associated techniques. Part IV is concerned with tracking techniques that are based on decisions regarding target maneuvers. This part surveys the multiplemodel methodsthe use of multiple models (and filters) simultaneouslywhich is the prevailing approach to maneuvering target tracking in the recent years. The survey is presented in a structured way, centered around three generations of algorithms: autonomous, cooperating, and variable structure. It emphasizes on the underpinning of each algorithm and covers various issues in algorithm design, application, and performance.
Equilibrium Bandwidth and Buffer Allocations for Elastic Traffics
, 2000
"... Consider a set of users sharing a network node under an allocation scheme that provides each user with a fixed minimum and a random extra amount of bandwidth and buffer. Allocations and prices are adjusted to adapt to resource availability and user demands. Equilibrium is achieved when all users opt ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
Consider a set of users sharing a network node under an allocation scheme that provides each user with a fixed minimum and a random extra amount of bandwidth and buffer. Allocations and prices are adjusted to adapt to resource availability and user demands. Equilibrium is achieved when all users optimize their utility and demand equals supply for nonfree resources. We analyze two models of user behavior. We show that at equilibrium expected return on purchasing variable resources can be higher than that on fixed resources. Thus users must balance the marginal increase in utility due to higher return on variable resources and the marginal decrease in utility due to their variability. For the first user model we further show that at equilibrium where such tradeoff is optimized all users hold strictly positive amounts of variable bandwidth and buffer. For the second model we show that if both variable bandwidth and buffer are scarce then at equilibrium every user either holds both variab...