Results 1  10
of
103
Nonparametric estimation of average treatment effects under exogeneity: a review
 REVIEW OF ECONOMICS AND STATISTICS
, 2004
"... Recently there has been a surge in econometric work focusing on estimating average treatment effects under various sets of assumptions. One strand of this literature has developed methods for estimating average treatment effects for a binary treatment under assumptions variously described as exogen ..."
Abstract

Cited by 526 (26 self)
 Add to MetaCart
Recently there has been a surge in econometric work focusing on estimating average treatment effects under various sets of assumptions. One strand of this literature has developed methods for estimating average treatment effects for a binary treatment under assumptions variously described as exogeneity, unconfoundedness, or selection on observables. The implication of these assumptions is that systematic (for example, average or distributional) differences in outcomes between treated and control units with the same values for the covariates are attributable to the treatment. Recent analysis has considered estimation and inference for average treatment effects under weaker assumptions than typical of the earlier literature by avoiding distributional and functionalform assumptions. Various methods of semiparametric estimation have been proposed, including estimating the unknown regression functions, matching, methods using the propensity score such as weighting and blocking, and combinations of these approaches. In this paper I review the state of this
Mediation in experimental and nonexperimental studies: new procedures and recommendations
 PSYCHOLOGICAL METHODS
, 2002
"... Mediation is said to occur when a causal effect of some variable X on an outcome Y is explained by some intervening variable M. The authors recommend that with small to moderate samples, bootstrap methods (B. Efron & R. Tibshirani, 1993) be used to assess mediation. Bootstrap tests are powerful ..."
Abstract

Cited by 434 (2 self)
 Add to MetaCart
(Show Context)
Mediation is said to occur when a causal effect of some variable X on an outcome Y is explained by some intervening variable M. The authors recommend that with small to moderate samples, bootstrap methods (B. Efron & R. Tibshirani, 1993) be used to assess mediation. Bootstrap tests are powerful because they detect that the sampling distribution of the mediated effect is skewed away from 0. They argue that R. M. Baron and D. A. Kenny’s (1986) recommendation of first testing the X → Y association for statistical significance should not be a requirement when there is a priori belief that the effect size is small or suppression is a possibility. Empirical examples and computer setups for bootstrap analyses are provided. Mediation models of psychological processes are popular because they allow interesting associations to be decomposed into components that reveal possible causal mechanisms. These models are useful for theory development and testing as well as for the identification of possible points of intervention in applied work. Mediation is equally of interest to experimental psychologists as it is to those who study naturally occurring processes through nonexperimental studies. For example, social–cognitive psychologists are interested in showing that the effects of cognitive priming on attitude change are mediated by the accessibility of certain beliefs (Eagly & Chaiken, 1993). Developmental psychologists use longitudinal methods to study how parental unemployment can have adverse effects on child behavior through its intervening effect on quality of parenting (Conger et al., 1990). Mediation analysis is also used in organizational
The Propensity Score with Continuous Treatments
 APPLIED BAYESIAN MODELING AND CAUSAL INFERENCE FROM INCOMPLETEDATA PERSPECTIVES
, 2004
"... ..."
Causal inference with general treatment regimes: Generalizing the propensity score
 Journal of the American Statistical Association
, 2004
"... In this article we develop the theoretical properties of the propensity function, which is a generalization of the propensity score of Rosenbaum and Rubin. Methods based on the propensity score have long been used for causal inference in observational studies; they are easy to use and can effectivel ..."
Abstract

Cited by 72 (9 self)
 Add to MetaCart
(Show Context)
In this article we develop the theoretical properties of the propensity function, which is a generalization of the propensity score of Rosenbaum and Rubin. Methods based on the propensity score have long been used for causal inference in observational studies; they are easy to use and can effectively reduce the bias caused by nonrandom treatment assignment. Although treatment regimes need not be binary in practice, the propensity score methods are generally confined to binary treatment scenarios. Two possible exceptions have been suggested for ordinal and categorical treatments. In this article we develop theory and methods that encompass all of these techniques and widen their applicability by allowing for arbitrary treatment regimes. We illustrate our propensity function methods by applying them to two datasets; we estimate the effect of smoking on medical expenditure and the effect of schooling on wages. We also conduct simulation studies to investigate the performance of our methods.
An Axiomatic Characterization of Causal Counterfactuals
, 1998
"... This paper studies the causal interpretation of counterfactual sentences using a modifiable structural equation model. It is shown that two properties of counterfactuals, namely, composition and effectiveness, are sound and complete relative to this interpretation, when recursive (i.e., feedback ..."
Abstract

Cited by 61 (21 self)
 Add to MetaCart
This paper studies the causal interpretation of counterfactual sentences using a modifiable structural equation model. It is shown that two properties of counterfactuals, namely, composition and effectiveness, are sound and complete relative to this interpretation, when recursive (i.e., feedbackless) models are considered. Composition and effectiveness also hold in Lewis's closestworld semantics, which implies that for recursive models the causal interpretation imposes no restrictions beyond those embodied in Lewis's framework. A third property, called reversibility, holds in nonrecursive causal models but not in Lewis's closestworld semantics, which implies that Lewis's axioms do not capture some properties of systems with feedback. Causal inferences based on counterfactual analysis are exemplified and compared to those based on graphical models.
Do GetOutTheVote Calls Reduce Turnout? The Importance of Statistical Methods for Field Experiments
 American Political Science Review
, 2005
"... In their landmark study of a field experiment, Gerber and Green (2000) found that getoutthevote calls reduce turnout by five percentage points. In this article, I introduce statistical methods that can uncover discrepancies between experimental design and actual implementation. The application of ..."
Abstract

Cited by 59 (16 self)
 Add to MetaCart
(Show Context)
In their landmark study of a field experiment, Gerber and Green (2000) found that getoutthevote calls reduce turnout by five percentage points. In this article, I introduce statistical methods that can uncover discrepancies between experimental design and actual implementation. The application of this methodology shows that Gerber and Green’s negative finding is caused by inadvertent deviations from their stated experimental protocol. The initial discovery led to revisions of the original data by the authors and retraction of the numerical results in their article. Analysis of their revised data, however, reveals new systematic patterns of implementation errors. Indeed, treatment assignments of the revised data appear to be even less randomized than before their corrections. To adjust for these problems, I employ a more appropriate statistical method and demonstrate that telephone canvassing increases turnout by five percentage points. This article demonstrates how statistical methods can find and correct complications of field experiments. Voter mobilization campaigns are a central part of democratic elections. In the 2000 general election, for example, the Democratic and Republican parties spent an estimated $100 million on
An Extended Class of Instrumental Variables for the Estimation of Causal Effects
 UCSD DEPT. OF ECONOMICS DISCUSSION PAPER
, 1996
"... This paper builds on the structural equations, treatment effect, and machine learning literatures to provide a causal framework that permits the identification and estimation of causal effects from observational studies. We begin by providing a causal interpretation for standard exogenous regresso ..."
Abstract

Cited by 41 (15 self)
 Add to MetaCart
This paper builds on the structural equations, treatment effect, and machine learning literatures to provide a causal framework that permits the identification and estimation of causal effects from observational studies. We begin by providing a causal interpretation for standard exogenous regressors and standard “valid” and “relevant” instrumental variables. We then build on this interpretation to characterize extended instrumental variables (EIV) methods, that is methods that make use of variables that need not be valid instruments in the standard sense, but that are nevertheless instrumental in the recovery of causal effects of interest. After examining special cases of single and double EIV methods, we provide necessary and sufficient conditions for the identification of causal effects by means of EIV and provide consistent and asymptotically normal estimators for the effects of interest.
Inference and Hierarchical Modeling in the Social Sciences
, 1995
"... this paper I (1) examine three levels of inferential strength supported by typical social science datagathering methods, and call for a greater degree of explicitness, when HMs and other models are applied, in identifying which level is appropriate; (2) reconsider the use of HMs in school effective ..."
Abstract

Cited by 34 (6 self)
 Add to MetaCart
this paper I (1) examine three levels of inferential strength supported by typical social science datagathering methods, and call for a greater degree of explicitness, when HMs and other models are applied, in identifying which level is appropriate; (2) reconsider the use of HMs in school effectiveness studies and metaanalysis from the perspective of causal inference; and (3) recommend the increased use of Gibbs sampling and other Markovchain Monte Carlo (MCMC) methods in the application of HMs in the social sciences, so that comparisons between MCMC and betterestablished fitting methodsincluding full or restricted maximum likelihood estimation based on the EM algorithm, Fisher scoring or iterative generalized least squaresmay be more fully informed by empirical practice.