Results 1  10
of
152
Sparse coding with an overcomplete basis set: a strategy employed by V1
 Vision Research
, 1997
"... The spatial receptive fields of simple cells in mammalian striate cortex have been reasonably well described physiologically and can be characterized as being localized, oriented, and ban@ass, comparable with the basis functions of wavelet transforms. Previously, we have shown that these receptive f ..."
Abstract

Cited by 591 (7 self)
 Add to MetaCart
The spatial receptive fields of simple cells in mammalian striate cortex have been reasonably well described physiologically and can be characterized as being localized, oriented, and ban@ass, comparable with the basis functions of wavelet transforms. Previously, we have shown that these receptive field properties may be accounted for in terms of a strategy for producing a sparse distribution of output activity in response to natural images. Here, in addition to describing this work in a more expansive fashion, we examine the neurobiological implications of sparse coding. Of particular interest is the case when the code is overcompletei.e., when the number of code elements is greater than the effective dimensionality of the input space. Because the basis functions are nonorthogonal and not linearly independent of each other, sparsifying the code will recruit only those basis functions necessary for representing a given input, and so the inputoutput function will deviate from being purely linear. These deviations from linearity provide a potential explanation for the weak forms of nonlinearity observed in the response properties of cortical simple cells, and they further make predictions about the expected interactions among units in
Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds
 Journal of Machine Learning Research
, 2003
"... The problem of dimensionality reduction arises in many fields of information processing, including machine learning, data compression, scientific visualization, pattern recognition, and neural computation. ..."
Abstract

Cited by 252 (8 self)
 Add to MetaCart
The problem of dimensionality reduction arises in many fields of information processing, including machine learning, data compression, scientific visualization, pattern recognition, and neural computation.
Independent Factor Analysis
 Neural Computation
, 1999
"... We introduce the independent factor analysis (IFA) method for recovering independent hidden sources from their observed mixtures. IFA generalizes and unifies ordinary factor analysis (FA), principal component analysis (PCA), and independent component analysis (ICA), and can handle not only square no ..."
Abstract

Cited by 219 (9 self)
 Add to MetaCart
We introduce the independent factor analysis (IFA) method for recovering independent hidden sources from their observed mixtures. IFA generalizes and unifies ordinary factor analysis (FA), principal component analysis (PCA), and independent component analysis (ICA), and can handle not only square noiseless mixing, but also the general case where the number of mixtures differs from the number of sources and the data are noisy. IFA is a twostep procedure. In the first step, the source densities, mixing matrix and noise covariance are estimated from the observed data by maximum likelihood. For this purpose we present an expectationmaximization (EM) algorithm, which performs unsupervised learning of an associated probabilistic model of the mixing situation. Each source in our model is described by a mixture of Gaussians, thus all the probabilistic calculations can be performed analytically. In the second step, the sources are reconstructed from the observed data by an optimal nonlinear ...
Separating style and content with bilinear models
 NEURAL COMPUTATION
, 2000
"... PERCEPTUAL systems routinely separate content from style, classifying familiar words spoken in an unfamiliar accent, identifying a font or handwriting style across letters, or recognizing a familiar face or object seen under unfamiliar viewing conditions. Yet a general and tractable computational mo ..."
Abstract

Cited by 173 (3 self)
 Add to MetaCart
PERCEPTUAL systems routinely separate content from style, classifying familiar words spoken in an unfamiliar accent, identifying a font or handwriting style across letters, or recognizing a familiar face or object seen under unfamiliar viewing conditions. Yet a general and tractable computational model of this ability to untangle the underlying factors of perceptual observations remains elusive. Existing factor models are either insufficiently rich to capture the complex interactions of perceptually meaningful factors such as phoneme and speaker accent or letter and font, or do not allow efficient learning algorithms. Here we show how perceptual systems may learn to solve these crucial tasks using surprisingly simple bilinear models. We report promising results in three realistic perceptual domains: spoken vowel classification with a benchmark multispeaker database, extrapolation of fonts to unseen letters, and translation of faces to novel illuminants.
Hierarchical Bayesian Inference in the Visual Cortex
, 2002
"... this paper, we propose a Bayesian theory of hierarchical cortical computation based both on (a) the mathematical and computational ideas of computer vision and pattern the ory and on (b) recent neurophysiological experimental evidence. We ,2 have proposed that Grenander's pattern theory 3 could pot ..."
Abstract

Cited by 173 (0 self)
 Add to MetaCart
this paper, we propose a Bayesian theory of hierarchical cortical computation based both on (a) the mathematical and computational ideas of computer vision and pattern the ory and on (b) recent neurophysiological experimental evidence. We ,2 have proposed that Grenander's pattern theory 3 could potentially model the brain as a generafive model in such a way that feedback serves to disambiguate and 'explain away' the earlier representa tion. The Helmholtz machine 4, 5 was an excellent step towards approximating this proposal, with feedback implementing priors. Its development, however, was rather limited, dealing only with binary images. Moreover, its feedback mechanisms were engaged only during the learning of the feedforward connections but not during perceptual inference, though the Gibbs sampling process for inference can potentially be interpreted as topdown feedback disambiguating low level representations? Rao and Ballard's predictive coding/Kalman filter model 6 did integrate generafive feedback in the perceptual inference process, but it was primarily a linear model and thus severely limited in practical utility. The datadriven Markov Chain Monte Carlo approach of Zhu and colleagues 7, 8 might be the most successful recent application of this proposal in solving real and difficult computer vision problems using generafive models, though its connection to the visual cortex has not been explored. Here, we bring in a powerful and widely applicable paradigm from artificial intelligence and computer vision to propose some new ideas about the algorithms of visual cortical process ing and the nature of representations in the visual cortex. We will review some of our and others' neurophysiological experimental data to lend support to these ideas
Modeling the manifolds of images of handwritten digits
 IEEE Transactions on Neural Networks
, 1997
"... description length, density estimation. ..."
Mean Field Theory for Sigmoid Belief Networks
 Journal of Artificial Intelligence Research
, 1996
"... We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics. ..."
Abstract

Cited by 116 (12 self)
 Add to MetaCart
We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics.
Human Brain Function
, 1997
"... Dynamic representations and generative models of ..."
Abstract

Cited by 106 (12 self)
 Add to MetaCart
Dynamic representations and generative models of
A theory of cortical responses
, 2005
"... This article concerns the nature of evoked brain responses and the principles underlying their generation. We start with the premise that the sensory brain has evolved to represent or infer the causes of changes in its sensory inputs. The problem of inference is well formulated in statistical terms. ..."
Abstract

Cited by 101 (21 self)
 Add to MetaCart
This article concerns the nature of evoked brain responses and the principles underlying their generation. We start with the premise that the sensory brain has evolved to represent or infer the causes of changes in its sensory inputs. The problem of inference is well formulated in statistical terms. The statistical fundaments of inference may therefore afford important constraints on neuronal implementation. By formulating the original ideas of Helmholtz on perception, in terms of modernday statistical theories, one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts. It turns out that the problems of inferring the causes of sensory input (perceptual inference) and learning the relationship between input and cause (perceptual learning) can be resolved using exactly the same principle. Specifically, both inference and learning rest on minimizing the brain’s free energy, as defined in statistical physics. Furthermore, inference and learning can proceed in a biologically plausible fashion. Cortical responses can be seen as the brain’s attempt to minimize the free energy induced by a stimulus and thereby encode the most likely cause of that stimulus. Similarly, learning emerges from changes in synaptic efficacy that minimize the free energy, averaged over all stimuli encountered. The underlying scheme rests on empirical Bayes and hierarchical models
Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex
 Neural Computation
, 1995
"... this paper, we describe a hierarchical network model of visual recognition that explains these experimental observations by using a form of the extended Kalman filter as given by the Minimum Description Length (MDL) principle. The model dynamically combines inputdriven bottomup signals with expec ..."
Abstract

Cited by 86 (21 self)
 Add to MetaCart
this paper, we describe a hierarchical network model of visual recognition that explains these experimental observations by using a form of the extended Kalman filter as given by the Minimum Description Length (MDL) principle. The model dynamically combines inputdriven bottomup signals with expectationdriven topdown signals to predict current recognition state. Synaptic weights in the model are adapted in a Hebbian manner according to a learning rule also derived from the MDL principle. The resulting prediction/learning scheme can be viewed as implementing a form of the ExpectationMaximization (EM) algorithm. The architecture of the model posits an active computational role for the reciprocal connections between adjoining visual cortical areas in determining neural response properties. In particular, the model demonstrates the possible role of feedback from higher cortical areas in mediating neurophysiological effects due to stimuli from beyond the classical receptive field. Si