Results 1  10
of
15
Expressivity of coalgebraic modal logic: The limits and beyond
 IN FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, VOLUME 3441 OF LNCS
, 2005
"... Modal logic has a good claim to being the logic of choice for describing the reactive behaviour of systems modeled as coalgebras. Logics with modal operators obtained from socalled predicate liftings have been shown to be invariant under behavioral equivalence. Expressivity results stating that, c ..."
Abstract

Cited by 39 (13 self)
 Add to MetaCart
Modal logic has a good claim to being the logic of choice for describing the reactive behaviour of systems modeled as coalgebras. Logics with modal operators obtained from socalled predicate liftings have been shown to be invariant under behavioral equivalence. Expressivity results stating that, conversely, logically indistinguishable states are behaviorally equivalent depend on the existence of separating sets of predicate liftings for the signature functor at hand. Here, we provide a classification result for predicate liftings which leads to an easy criterion for the existence of such separating sets, and we give simple examples of functors that fail to admit expressive normal or monotone modal logics, respectively, or in fact an expressive (unary) modal logic at all. We then move on to polyadic modal logic, where modal operators may take more than one argument formula. We show that every accessible functor admits an expressive polyadic modal logic. Moreover, expressive polyadic modal logics are, unlike unary modal logics, compositional.
Semantical Principles in the Modal Logic of Coalgebraic
"... Coalgebras for a functor on the category of sets subsume many formulations of the notion of transition system, including labelled transition systems, Kripke models, Kripke frames and many types of automata. This paper presents a multimodal language which is bisimulation invariant and (under a natur ..."
Abstract

Cited by 30 (6 self)
 Add to MetaCart
Coalgebras for a functor on the category of sets subsume many formulations of the notion of transition system, including labelled transition systems, Kripke models, Kripke frames and many types of automata. This paper presents a multimodal language which is bisimulation invariant and (under a natural completeness condition) expressive enough to characterise elements of the underlying state space up to bisimulation. Like Moss' coalgebraic logic, the theory can be applied to an arbitrary signature functor on the category of sets. Also, an upper bound for the size of conjunctions and disjunctions needed to obtain characteristic formulas is given.
PSPACE bounds for rank 1 modal logics
 IN LICS’06
, 2006
"... For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a sh ..."
Abstract

Cited by 26 (15 self)
 Add to MetaCart
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACEbounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant prooftheoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.
A Finite Model Construction For Coalgebraic Modal Logic
"... In recent years, a tight connection has emerged between modal logic on the one hand and coalgebras, understood as generic transition systems, on the other hand. Here, we prove that (finitary) coalgebraic modal logic has the finite model property. This fact not only reproves known completeness result ..."
Abstract

Cited by 24 (16 self)
 Add to MetaCart
In recent years, a tight connection has emerged between modal logic on the one hand and coalgebras, understood as generic transition systems, on the other hand. Here, we prove that (finitary) coalgebraic modal logic has the finite model property. This fact not only reproves known completeness results for coalgebraic modal logic, which we push further by establishing that every coalgebraic modal logic admits a complete axiomatization of rank 1; it also enables us to establish a generic decidability result and a first complexity bound. Examples covered by these general results include, besides standard HennessyMilner logic, graded modal logic and probabilistic modal logic.
Algebraiccoalgebraic specification in CoCasl
 J. LOGIC ALGEBRAIC PROGRAMMING
, 2006
"... We introduce CoCasl as a simple coalgebraic extension of the algebraic specification language Casl. CoCasl allows the nested combination of algebraic datatypes and coalgebraic process types. We show that the wellknown coalgebraic modal logic can be expressed in CoCasl. We present sufficient criter ..."
Abstract

Cited by 19 (8 self)
 Add to MetaCart
We introduce CoCasl as a simple coalgebraic extension of the algebraic specification language Casl. CoCasl allows the nested combination of algebraic datatypes and coalgebraic process types. We show that the wellknown coalgebraic modal logic can be expressed in CoCasl. We present sufficient criteria for the existence of cofree models, also for several variants of nested cofree and free specifications. Moreover, we describe an extension of the existing proof support for Casl (in the shape of an encoding into higherorder logic) to CoCasl.
Rank1 modal logics are coalgebraic
 IN STACS 2007, 24TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, PROCEEDINGS
, 2007
"... Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coal ..."
Abstract

Cited by 14 (11 self)
 Add to MetaCart
Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coalgebraic semantics. As a consequence, recent results on coalgebraic modal logic, in particular generic decision procedures and upper complexity bounds, become applicable to arbitrary rank 1 modal logics, without regard to their semantic status; we thus obtain purely syntactic versions of these results. As an extended example, we apply our framework to recently defined deontic logics.
The Coalgebraic Dual Of Birkhoff's Variety Theorem
, 2000
"... We prove an abstract dual of Birkho's variety theorem for categories E of coalgebras, given suitable assumptions on the underlying category E and suitable : E ## E . We also discuss covarieties closed under bisimulations and show that they are denable by a trivial kind of coequation { namely, ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
We prove an abstract dual of Birkho's variety theorem for categories E of coalgebras, given suitable assumptions on the underlying category E and suitable : E ## E . We also discuss covarieties closed under bisimulations and show that they are denable by a trivial kind of coequation { namely, over one "color". We end with an example of a covariety which is not closed under bisimulations. This research is part of the Logic of Types and Computation project at Carnegie Mellon University under the direction of Dana Scott.
Coalgebraic modal logic beyond Sets
 In MFPS XXIII
, 2007
"... Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be
The least fibred lifting and the expressivity of coalgebraic modal logic
 In Proc. CALCO 2005, volume 3629 of LNCS
, 2005
"... and relationpreserving functions. In this paper, the least (fibrewise) of such liftings, L(B), is characterized for essentially any B. The lifting has all the useful properties of the relation lifting due to Jacobs, without the usual assumption of weak pullback preservation; if B preserves weak pu ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
and relationpreserving functions. In this paper, the least (fibrewise) of such liftings, L(B), is characterized for essentially any B. The lifting has all the useful properties of the relation lifting due to Jacobs, without the usual assumption of weak pullback preservation; if B preserves weak pullbacks, the two liftings coincide. Equivalence relations can be viewed as Boolean algebras of subsets (predicates, tests). This correspondence relates L(B) to the least test suite lifting T (B), which is defined in the spirit of predicate lifting as used in coalgebraic modal logic. Properties of T (B) translate to a general expressivity result for a modal logic for Bcoalgebras. In the resulting logic, modal operators of any arity can appear. 1
Bialgebraic methods in structural operational semantics
 ENTCS
, 2007
"... Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach to formal reasoning about wellbehaved structural operational specifications. An extension of algebraic and coalgebraic methods, it abstracts from concrete notions of syntax and system behaviour, thus treating various k ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach to formal reasoning about wellbehaved structural operational specifications. An extension of algebraic and coalgebraic methods, it abstracts from concrete notions of syntax and system behaviour, thus treating various kinds of operational descriptions in a uniform fashion. In this talk, the current state of the art in the area of bialgebraic semantics is presented, and its prospects for the future are sketched. In particular, a combination of basic bialgebraic techniques with a categorical approach to modal logic is described, as an abstract approach to proving compositionality by decomposing modal logics over structural operational specifications. Keywords: