Results 1  10
of
45
OrderSorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and Partial Operations
 Theoretical Computer Science
, 1992
"... This paper generalizes manysorted algebra (hereafter, MSA) to ordersorted algebra (hereafter, OSA) by allowing a partial ordering relation on the set of sorts. This supports abstract data types with multiple inheritance (in roughly the sense of objectoriented programming), several forms of pol ..."
Abstract

Cited by 207 (33 self)
 Add to MetaCart
This paper generalizes manysorted algebra (hereafter, MSA) to ordersorted algebra (hereafter, OSA) by allowing a partial ordering relation on the set of sorts. This supports abstract data types with multiple inheritance (in roughly the sense of objectoriented programming), several forms of polymorphism and overloading, partial operations (as total on equationally defined subsorts), exception handling, and an operational semantics based on term rewriting. We give the basic algebraic constructions for OSA, including quotient, image, product and term algebra, and we prove their basic properties, including Quotient, Homomorphism, and Initiality Theorems. The paper's major mathematical results include a notion of OSA deduction, a Completeness Theorem for it, and an OSA Birkhoff Variety Theorem. We also develop conditional OSA, including Initiality, Completeness, and McKinseyMalcev Quasivariety Theorems, and we reduce OSA to (conditional) MSA, which allows lifting many known MSA results to OSA. Retracts, which intuitively are left inverses to subsort inclusions, provide relatively inexpensive runtime error handling. We show that it is safe to add retracts to any OSA signature, in the sense that it gives rise to a conservative extension. A final section compares and contrasts many different approaches to OSA. This paper also includes several examples demonstrating the flexibility and applicability of OSA, including some standard benchmarks like STACK and LIST, as well as a much more substantial example, the number hierarchy from the naturals up to the quaternions.
Maude: Specification and Programming in Rewriting Logic
, 2001
"... Maude is a highlevel language and a highperformance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and ..."
Abstract

Cited by 176 (63 self)
 Add to MetaCart
Maude is a highlevel language and a highperformance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and theories. The underlying equational logic chosen for Maude is membership equational logic, that has sorts, subsorts, operator overloading, and partiality definable by membership and equality conditions. Rewriting logic is reflective, in the sense of being able to express its own metalevel at the object level. Reflection is systematically exploited in Maude endowing the language with powerful metaprogramming capabilities, including both userdefinable module operations and declarative strategies to guide the deduction process. This paper explains and illustrates with examples the main concepts of Maude's language design, including its underlying logic, functional, system and objectoriented modules, as well as parameterized modules, theories, and views. We also explain how Maude supports reflection, metaprogramming and internal strategies. The paper outlines the principles underlying the Maude system implementation, including its semicompilation techniques. We conclude with some remarks about applications, work on a formal environment for Maude, and a mobile language extension of Maude.
Rewriting Logic as a Logical and Semantic Framework
, 1993
"... Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are und ..."
Abstract

Cited by 149 (53 self)
 Add to MetaCart
Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are understood as mappings L ! F that translate one logic into the other in a conservative way. The ease with which such maps can be defined for a number of quite different logics of interest, including equational logic, Horn logic with equality, linear logic, logics with quantifiers, and any sequent calculus presentation of a logic for a very general notion of "sequent," is discussed in detail. Using the fact that rewriting logic is reflective, it is often possible to reify inside rewriting logic itself a representation map L ! RWLogic for the finitely presentable theories of L. Such a reification takes the form of a map between the abstract data types representing the finitary theories of...
Principles of Maude
, 1996
"... This paper introduces the basic concepts of the rewriting logic language Maude and discusses its implementation. Maude is a widespectrum language supporting formal specification, rapid prototyping, and parallel programming. Maude's rewriting logic paradigm includes the functional and objector ..."
Abstract

Cited by 124 (28 self)
 Add to MetaCart
This paper introduces the basic concepts of the rewriting logic language Maude and discusses its implementation. Maude is a widespectrum language supporting formal specification, rapid prototyping, and parallel programming. Maude's rewriting logic paradigm includes the functional and objectoriented paradigms as sublanguages. The fact that rewriting logic is reflective leads to novel metaprogramming capabilities that can greatly increase software reusability and adaptability. Control of the rewriting computation is achieved through internal strategy languages defined inside the logic. Maude's rewrite engine is designed with the explicit goal of being highly extensible and of supporting rapid prototyping and formal methods applications, but its semicompilation techniques allow it to meet those goals with good performance. 1 Introduction Maude is a logical language based on rewriting logic [16,23,19]. It is therefore related to other rewriting logic languages such as Cafe [10], ELAN [...
Introducing OBJ
, 1993
"... This is an introduction to the philosophy and use of OBJ, emphasizing its operational semantics, with aspects of its history and its logical semantics. Release 2 of OBJ3 is described in detail, with many examples. OBJ is a wide spectrum firstorder functional language that is rigorously based on ..."
Abstract

Cited by 121 (30 self)
 Add to MetaCart
This is an introduction to the philosophy and use of OBJ, emphasizing its operational semantics, with aspects of its history and its logical semantics. Release 2 of OBJ3 is described in detail, with many examples. OBJ is a wide spectrum firstorder functional language that is rigorously based on (order sorted) equational logic and parameterized programming, supporting a declarative style that facilitates verification and allows OBJ to be used as a theorem prover.
Unification: A multidisciplinary survey
 ACM Computing Surveys
, 1989
"... The unification problem and several variants are presented. Various algorithms and data structures are discussed. Research on unification arising in several areas of computer science is surveyed, these areas include theorem proving, logic programming, and natural language processing. Sections of the ..."
Abstract

Cited by 106 (0 self)
 Add to MetaCart
The unification problem and several variants are presented. Various algorithms and data structures are discussed. Research on unification arising in several areas of computer science is surveyed, these areas include theorem proving, logic programming, and natural language processing. Sections of the paper include examples that highlight particular uses
Rewriting Logic as a Semantic Framework for Concurrency: a Progress Report
, 1996
"... . This paper surveys the work of many researchers on rewriting logic since it was first introduced in 1990. The main emphasis is on the use of rewriting logic as a semantic framework for concurrency. The goal in this regard is to express as faithfully as possible a very wide range of concurrency mod ..."
Abstract

Cited by 83 (23 self)
 Add to MetaCart
. This paper surveys the work of many researchers on rewriting logic since it was first introduced in 1990. The main emphasis is on the use of rewriting logic as a semantic framework for concurrency. The goal in this regard is to express as faithfully as possible a very wide range of concurrency models, each on its own terms, avoiding any encodings or translations. Bringing very different models under a common semantic framework makes easier to understand what different models have in common and how they differ, to find deep connections between them, and to reason across their different formalisms. It becomes also much easier to achieve in a rigorous way the integration and interoperation of different models and languages whose combination offers attractive advantages. The logic and model theory of rewriting logic are also summarized, a number of current research directions are surveyed, and some concluding remarks about future directions are made. Table of Contents 1 In...
Using Dynamic Classes and Role Classes to Model Object Migration
, 1995
"... In this paper, we argue that objectoriented models must be able to represent three kinds of taxonomic structures: static classes, dynamic classes, and role classes, that behave differently with respect to object migration. If CAR is a static subclass of V EHICLE, then a vehicle that is not a car ..."
Abstract

Cited by 38 (2 self)
 Add to MetaCart
In this paper, we argue that objectoriented models must be able to represent three kinds of taxonomic structures: static classes, dynamic classes, and role classes, that behave differently with respect to object migration. If CAR is a static subclass of V EHICLE, then a vehicle that is not a car can never migrate to the CAR subclass. On the other hand, if EMP loyee is a dynamic subclass of PERSON object class, then a PERSON that is not an employee may migrate to EMP . In both cases, an instance of the subclass is identical to an instance of the superclass. By contrast, if EMP is modeled as a role class of PERSON , then every employee differs from every person, but a PERSON instance can acquire one or more EMP instances as roles. The distinctions between the three kinds of classes are orthogonal, so that we can have, for example, dynamic subclasses of object or role classes, or role classes of dynamic or static classes. The paper is divided into two parts. In the first, infor...
The Requirement and Design Specification Language SPECTRUM  An Informal Introduction
, 1993
"... This paper gives a short introduction to the algebraic specification language Spectrum. Using simple, wellknown examples, the objectives and concepts of Spectrum are explained. The Spectrum language is based on axiomatic specification techniques and is oriented towards functional programs. Spectru ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
This paper gives a short introduction to the algebraic specification language Spectrum. Using simple, wellknown examples, the objectives and concepts of Spectrum are explained. The Spectrum language is based on axiomatic specification techniques and is oriented towards functional programs. Spectrum includes the following features: ffl partial functions, definedness logic and fixed point theory ffl higherorder elements and typed abstraction ffl nonstrict functions and infinite objects ffl full firstorder predicate logic with induction principles ffl predicative polymorphism with sort classes ffl parameterization and modularization Spectrum is based on the concept of loose semantics.
Formal program development in Extended ML for the working programmer
, 1991
"... Extended ML is a framework for the formal development of programs in the Standard ML programming language from highlevel specifications of their required input/output behaviour. It strongly supports the development of modular programs consisting of an interconnected collection of generic and reusab ..."
Abstract

Cited by 34 (10 self)
 Add to MetaCart
Extended ML is a framework for the formal development of programs in the Standard ML programming language from highlevel specifications of their required input/output behaviour. It strongly supports the development of modular programs consisting of an interconnected collection of generic and reusable units. The Extended ML framework includes a methodology for formal program development which establishes a number of ways of proceeding from a given specification of a programming task towards a program. Each such step gives rise to one or more proof obligations which must be proved in order to establish the correctness of that step. This paper is intended as a useroriented summary of the Extended ML language and methodology. Theoretical technicalities are avoided whenever possible, with emphasis placed on the practical aspects of formal program development. An extended example of a complete program development in Extended ML is included.