Results 1 
4 of
4
Some ComputabilityTheoretical Aspects of Reals and Randomness
 the Lect. Notes Log. 18, Assoc. for Symbol. Logic
, 2001
"... We study computably enumerable reals (i.e. their left cut is computably enumerable) in terms of their spectra of representations and presentations. ..."
Abstract

Cited by 24 (7 self)
 Add to MetaCart
We study computably enumerable reals (i.e. their left cut is computably enumerable) in terms of their spectra of representations and presentations.
Relativizing Chaitin’s halting probability
 J. Math. Log
"... Abstract. As a natural example of a 1random real, Chaitin proposed the halting probability Ω of a universal prefixfree machine. We can relativize this example by considering a universal prefixfree oracle machine U. Let Ω A U be the halting probability of U A; this gives a natural uniform way of p ..."
Abstract

Cited by 21 (7 self)
 Add to MetaCart
Abstract. As a natural example of a 1random real, Chaitin proposed the halting probability Ω of a universal prefixfree machine. We can relativize this example by considering a universal prefixfree oracle machine U. Let Ω A U be the halting probability of U A; this gives a natural uniform way of producing an Arandom real for every A ∈ 2 ω. It is this operator which is our primary object of study. We can draw an analogy between the jump operator from computability theory and this Omega operator. But unlike the jump, which is invariant (up to computable permutation) under the choice of an effective enumeration of the partial computable functions, Ω A U can be vastly different for different choices of U. Even for a fixed U, there are oracles A = ∗ B such that Ω A U and Ω B U are 1random relative to each other. We prove this and many other interesting properties of Omega operators. We investigate these operators from the perspective of analysis, computability theory, and of course, algorithmic randomness. 1.
Turing Incomparability in Scott Sets
 Proceedings of the American Mathematical Society
"... Abstract. For every Scott set F and every nonrecursive set X in F, there is a Y ∈ F such that X and Y are Turing incomparable. 1. ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. For every Scott set F and every nonrecursive set X in F, there is a Y ∈ F such that X and Y are Turing incomparable. 1.
Low upper bounds of ideals
"... Abstract. We show that there is a low Tupper bound for the class of Ktrivial sets, namely those which are weak from the point of view of algorithmic randomness. This result is a special case of a more general characterization of ideals in ∆0 2 Tdegrees for which there is a low Tupper bound. 1. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. We show that there is a low Tupper bound for the class of Ktrivial sets, namely those which are weak from the point of view of algorithmic randomness. This result is a special case of a more general characterization of ideals in ∆0 2 Tdegrees for which there is a low Tupper bound. 1.