Results 1  10
of
107
How to Use Expert Advice
 JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY
, 1997
"... We analyze algorithms that predict a binary value by combining the predictions of several prediction strategies, called experts. Our analysis is for worstcase situations, i.e., we make no assumptions about the way the sequence of bits to be predicted is generated. We measure the performance of the ..."
Abstract

Cited by 314 (65 self)
 Add to MetaCart
We analyze algorithms that predict a binary value by combining the predictions of several prediction strategies, called experts. Our analysis is for worstcase situations, i.e., we make no assumptions about the way the sequence of bits to be predicted is generated. We measure the performance of the algorithm by the difference between the expected number of mistakes it makes on the bit sequence and the expected number of mistakes made by the best expert on this sequence, where the expectation is taken with respect to the randomization in the predictions. We show that the minimum achievable difference is on the order of the square root of the number of mistakes of the best expert, and we give efficient algorithms that achieve this. Our upper and lower bounds have matching leading constants in most cases. We then show howthis leads to certain kinds of pattern recognition/learning algorithms with performance bounds that improve on the best results currently known in this context. We also compare our analysis to the case in which log loss is used instead of the expected number of mistakes.
The minimum description length principle in coding and modeling
 IEEE Trans. Inform. Theory
, 1998
"... Abstract — We review the principles of Minimum Description Length and Stochastic Complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon’s basic source coding theorem. The normalized m ..."
Abstract

Cited by 306 (12 self)
 Add to MetaCart
Abstract — We review the principles of Minimum Description Length and Stochastic Complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon’s basic source coding theorem. The normalized maximized likelihood, mixture, and predictive codings are each shown to achieve the stochastic complexity to within asymptotically vanishing terms. We assess the performance of the minimum description length criterion both from the vantage point of quality of data compression and accuracy of statistical inference. Context tree modeling, density estimation, and model selection in Gaussian linear regression serve as examples. Index Terms—Complexity, compression, estimation, inference, universal modeling.
The ContextTree Weighting Method: Basic Properties
 IEEE Trans. Inform. Theory
, 1995
"... We describe a sequential universal data compression procedure for binary tree sources that performs the "double mixture." Using a context tree, this method weights in an efficient recursive way the coding distributions corresponding to all bounded memory tree sources, and achieves a desirable coding ..."
Abstract

Cited by 160 (12 self)
 Add to MetaCart
We describe a sequential universal data compression procedure for binary tree sources that performs the "double mixture." Using a context tree, this method weights in an efficient recursive way the coding distributions corresponding to all bounded memory tree sources, and achieves a desirable coding distribution for tree sources with an unknown model and unknown parameters. Computational and storage complexity of the proposed procedure are both linear in the source sequence length. We derive a natural upper bound on the cumulative redundancy of our method for individual sequences. The three terms in this bound can be identified as coding, parameter, and model redundancy. The bound holds for all source sequence lengths, not only for asymptotically large lengths. The analysis that leads to this bound is based on standard techniques and turns out to be extremely simple. Our upper bound on the redundancy shows that the proposed contexttree weighting procedure is optimal in the sense that it achieves the Rissanen (1984) lower bound.
Universal prediction
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... This paper consists of an overview on universal prediction from an informationtheoretic perspective. Special attention is given to the notion of probability assignment under the selfinformation loss function, which is directly related to the theory of universal data compression. Both the probabili ..."
Abstract

Cited by 136 (11 self)
 Add to MetaCart
This paper consists of an overview on universal prediction from an informationtheoretic perspective. Special attention is given to the notion of probability assignment under the selfinformation loss function, which is directly related to the theory of universal data compression. Both the probabilistic setting and the deterministic setting of the universal prediction problem are described with emphasis on the analogy and the differences between results in the two settings.
Adaptive game playing using multiplicative weights
 GAMES AND ECONOMIC BEHAVIOR
, 1999
"... We present a simple algorithm for playing a repeated game. We show that a player using this algorithm suffers average loss that is guaranteed to come close to the minimum loss achievable by any fixed strategy. Our bounds are nonasymptotic and hold for any opponent. The algorithm, which uses the mult ..."
Abstract

Cited by 131 (14 self)
 Add to MetaCart
We present a simple algorithm for playing a repeated game. We show that a player using this algorithm suffers average loss that is guaranteed to come close to the minimum loss achievable by any fixed strategy. Our bounds are nonasymptotic and hold for any opponent. The algorithm, which uses the multiplicativeweight methods of Littlestone and Warmuth, is analyzed using the Kullback–Liebler divergence. This analysis yields a new, simple proof of the min–max theorem, as well as a provable method of approximately solving a game. A variant of our gameplaying algorithm is proved to be optimal in a very strong sense.
The Context Tree Weighting Method: Basic Properties
 IEEE Transactions on Information Theory
, 1995
"... We describe a sequential universal data compression procedure for binary tree sources that performs the "double mixture". Using a context tree, this method weights in an efficient recursive way the coding distributions corresponding to all bounded memory tree sources, and achieves a desirable coding ..."
Abstract

Cited by 79 (1 self)
 Add to MetaCart
We describe a sequential universal data compression procedure for binary tree sources that performs the "double mixture". Using a context tree, this method weights in an efficient recursive way the coding distributions corresponding to all bounded memory tree sources, and achieves a desirable coding distribution for tree sources with an unknown model and unknown parameters. Computational and storage complexity of the proposed procedure are both linear in the source sequence length. We derive a natural upper bound on the cumulative redundancy of our method for individual sequences. The three terms in this bound can be identified as coding, parameter and model redundancy. The bound holds for all source sequence lengths, not only for asymptotically large lengths. The analysis that leads to this bound is based on standard techniques and turns out to be extremely simple. Our upper bound on the redundancy shows that the proposed context tree weighting procedure is optimal in the sense that i...
Sequential Prediction of Individual Sequences Under General Loss Functions
 IEEE Transactions on Information Theory
, 1998
"... We consider adaptive sequential prediction of arbitrary binary sequences when the performance is evaluated using a general loss function. The goal is to predict on each individual sequence nearly as well as the best prediction strategy in a given comparison class of (possibly adaptive) prediction st ..."
Abstract

Cited by 74 (7 self)
 Add to MetaCart
We consider adaptive sequential prediction of arbitrary binary sequences when the performance is evaluated using a general loss function. The goal is to predict on each individual sequence nearly as well as the best prediction strategy in a given comparison class of (possibly adaptive) prediction strategies, called experts. By using a general loss function, we generalize previous work on universal prediction, forecasting, and data compression. However, here we restrict ourselves to the case when the comparison class is finite. For a given sequence, we define the regret as the total loss on the entire sequence suffered by the adaptive sequential predictor, minus the total loss suffered by the predictor in the comparison class that performs best on that particular sequence. We show that for a large class of loss functions, the minimax regret is either \Theta(log N) or \Omega\Gamma p ` log N ), depending on the loss function, where N is the number of predictors in the comparison class a...
A tutorial introduction to the minimum description length principle
 in Advances in Minimum Description Length: Theory and Applications. 2005
"... ..."
Predicting a Binary Sequence Almost as Well as the Optimal Biased Coin
, 1996
"... We apply the exponential weight algorithm, introduced and Littlestone and Warmuth [17] and by Vovk [24] to the problem of predicting a binary sequence almost as well as the best biased coin. We first show that for the case of the logarithmic loss, the derived algorithm is equivalent to the Bayes alg ..."
Abstract

Cited by 39 (4 self)
 Add to MetaCart
We apply the exponential weight algorithm, introduced and Littlestone and Warmuth [17] and by Vovk [24] to the problem of predicting a binary sequence almost as well as the best biased coin. We first show that for the case of the logarithmic loss, the derived algorithm is equivalent to the Bayes algorithm with Jeffrey's prior, that was studied by Xie and Barron under probabilistic assumptions [26]. We derive a uniform bound on the regret which holds for any sequence. We also show that if the empirical distribution of the sequence is bounded away from 0 and from 1, then, as the length of the sequence increases to infinity, the difference between this bound and a corresponding bound on the average case regret of the same algorithm (which is asymptotically optimal in that case) is only 1=2. We show that this gap of 1=2 is necessary by calculating the regret of the minmax optimal algorithm for this problem and showing that the asymptotic upper bound is tight. We also study the application...
Precise Minimax Redundancy and Regret
 IEEE TRANS. INFORMATION THEORY
, 2004
"... Recent years have seen a resurgence of interest in redundancy of lossless coding. The redundancy (regret) of universal xed{to{variable length coding for a class of sources determines by how much the actual code length exceeds the optimal (ideal over the class) code length. In a minimax scenario ..."
Abstract

Cited by 33 (13 self)
 Add to MetaCart
Recent years have seen a resurgence of interest in redundancy of lossless coding. The redundancy (regret) of universal xed{to{variable length coding for a class of sources determines by how much the actual code length exceeds the optimal (ideal over the class) code length. In a minimax scenario one nds the best code for the worst source either in the worst case (called also maximal minimax) or on average. We rst study the worst case minimax redundancy over a class of stationary ergodic sources and replace Shtarkov's bound by an exact formula. Among others, we prove that a generalized Shannon code minimizes the worst case redundancy, derive asymptotically its redundancy, and establish some general properties. This allows us to obtain precise redundancy rates for memoryless, Markov and renewal sources. For example, we derive the exact constant of the redundancy rate for memoryless and Markov sources by showing that an integer nature of coding contributes log(log m=(m 1))= log m+ o(1) where m is the size of the alphabet. Then we deal with the average minimax redundancy and regret. Our approach