Results 1 
5 of
5
A New Method for Solving Hard Satisfiability Problems
 AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract

Cited by 679 (20 self)
 Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approaches such as the DavisPutnam procedure or resolution. We also show that GSAT can solve structured satisfiability problems quickly. In particular, we solve encodings of graph coloring problems, Nqueens, and Boolean induction. General application strategies and limitations of the approach are also discussed. GSAT is best viewed as a modelfinding procedure. Its good performance suggests that it may be advantageous to reformulate reasoning tasks that have traditionally been viewed as theoremproving problems as modelfinding tasks.
Planning as satisfiability
 IN ECAI92
, 1992
"... We develop a formal model of planning based on satisfiability rather than deduction. The satis ability approach not only provides a more flexible framework for stating di erent kinds of constraints on plans, but also more accurately reflects the theory behind modern constraintbased planning systems ..."
Abstract

Cited by 429 (25 self)
 Add to MetaCart
We develop a formal model of planning based on satisfiability rather than deduction. The satis ability approach not only provides a more flexible framework for stating di erent kinds of constraints on plans, but also more accurately reflects the theory behind modern constraintbased planning systems. Finally, we consider the computational characteristics of the resulting formulas, by solving them with two very different satisfiability testing procedures.
Hard and Easy Distributions of SAT Problems
, 1992
"... We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to ..."
Abstract

Cited by 218 (17 self)
 Add to MetaCart
We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to generate random formulas that are hard, that is, for which satisfiability testing is quite difficult. Our results provide a benchmark for the evaluation of satisfiabilitytesting procedures. Introduction Many computational tasks of interest to AI, to the extent that they can be precisely characterized at all, can be shown to be NPhard in their most general form. However, there is fundamental disagreement, at least within the AI community, about the implications of this. It is claimed on the one hand that since the performance of algorithms designed to solve NPhard tasks degrades rapidly with small increases in input size, something will need to be given up to obtain acceptable behavior....
Generating Hard Satisfiability Problems
 Artificial Intelligence
, 1996
"... We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible ..."
Abstract

Cited by 98 (2 self)
 Add to MetaCart
We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to generate random formulas that are hard, that is, for which satisfiability testing is quite difficult. Our results provide a benchmark for the evaluation of satisfiabilitytesting procedures. In Artificial Intelligence, 81 (19996) 1729. 1 Introduction Many computational tasks of interest to AI, to the extent that they can be precisely characterized at all, can be shown to be NPhard in their most general form. However, there is fundamental disagreement, at least within the AI community, about the implications of this. It is claimed on the one hand that since the performance of algorithms designed to solve NPhard tasks degrades rapidly with small increases in input size, something ...
GSAT: A new method for solving hard satisfiability problems
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satis ability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approach ..."
Abstract
 Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satis ability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approaches such as the DavisPutnam procedure or resolution. We also show that GSAT can solve structured satisfiability problems quickly. In particular, we solve encodings of graph coloring problems, Nqueens, and Boolean induction. General application strategies and limitations of the approach are also discussed. GSAT is best viewed as a modelfinding procedure. Its good performance suggests that it may beadvantageous to reformulate reasoning tasks that have traditionally been viewed as theoremproving problems as modelfinding tasks.