Results 1 
9 of
9
Convex drawings of Planar Graphs and the Order Dimension of 3Polytopes
 ORDER
, 2000
"... We define an analogue of Schnyder's tree decompositions for 3connected planar graphs. Based on this structure we obtain: Let G be a 3connected planar graph with f faces, then G has a convex drawing with its vertices embedded on the (f 1) (f 1) grid. Let G be a 3connected planar graph. The d ..."
Abstract

Cited by 33 (13 self)
 Add to MetaCart
We define an analogue of Schnyder's tree decompositions for 3connected planar graphs. Based on this structure we obtain: Let G be a 3connected planar graph with f faces, then G has a convex drawing with its vertices embedded on the (f 1) (f 1) grid. Let G be a 3connected planar graph. The dimension of the incidence order of vertices, edges and bounded faces of G is at most 3. The second result is originally due to Brightwell and Trotter. Here we give a substantially simpler proof.
MinimumWidth Grid Drawings of Plane Graphs
 Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science
, 1995
"... Given a plane graph G, we wish to draw it in the plane in such a way that the vertices of G are represented as grid points, and the edges are represented as straightline segments between their endpoints. An additional objective is to minimize the size of the resulting grid. It is known that each pl ..."
Abstract

Cited by 30 (11 self)
 Add to MetaCart
Given a plane graph G, we wish to draw it in the plane in such a way that the vertices of G are represented as grid points, and the edges are represented as straightline segments between their endpoints. An additional objective is to minimize the size of the resulting grid. It is known that each plane graph can be drawn in such a way in a (n \Gamma 2) \Theta (n \Gamma 2) grid (for n 3), and that no grid smaller than (2n=3 \Gamma 1) \Theta (2n=3 \Gamma 1) can be used for this purpose, if n is a multiple of 3. In fact, for all n 3, each dimension of the resulting grid needs to be at least b2(n \Gamma 1)=3c, even if the other one is allowed to be unbounded. In this paper we show that this bound is tight by presenting a grid drawing algorithm that produces drawings of width b2(n \Gamma 1)=3c. The height of the produced drawings is bounded by 4b2(n \Gamma 1)=3c \Gamma 1. Our algorithm runs in linear time and is easy to implement. 1 Introduction The problem of automatic graph drawing ha...
Transversal structures on triangulations, combinatorial study and straightline drawing
, 2007
"... This article focuses on a combinatorial structure specific to triangulated plane graphs with quadrangular outer face and no separating triangle, called irreducible triangulations. The structure has been introduced by Xin He under the name of regular edgelabelling and consists of two transversal bip ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
This article focuses on a combinatorial structure specific to triangulated plane graphs with quadrangular outer face and no separating triangle, called irreducible triangulations. The structure has been introduced by Xin He under the name of regular edgelabelling and consists of two transversal bipolar orientations. For this reason, the terminology used here is that of transversal structures. The main results obtained in the article are a bijection between irreducible triangulations and ternary trees, and a straightline drawing algorithm for irreducible triangulations. For a random irreducible triangulation with n vertices, the grid size of the drawing is asymptotically with high probability 11n/27 × 11n/27 up to an additive error of O ( √ n). In contrast, the best previously known algorithm for these triangulations only guarantees a grid size (⌈n/2 ⌉ − 1) × ⌊n/2⌋.
Planar Drawings of Plane Graphs
, 2000
"... this paper first we review known two methods to find such drawings, then explain a hidden relation between them, and finally survey related results. ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
this paper first we review known two methods to find such drawings, then explain a hidden relation between them, and finally survey related results.
Transversal structures on triangulations, with application to straight line drawing
 LECTURE NOTES IN COMPUTER SCIENCE
, 2005
"... We define and study a structure called transversal edgepartition related to triangulations without non empty triangles, which is equivalent to the regular edge labeling discovered by Kant and He. We study other properties of this structure and show that it gives rise to a new straightline drawing ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
We define and study a structure called transversal edgepartition related to triangulations without non empty triangles, which is equivalent to the regular edge labeling discovered by Kant and He. We study other properties of this structure and show that it gives rise to a new straightline drawing algorithm for triangulations without non empty triangles, and more generally for 4connected plane graphs with at least 4 border vertices. Taking uniformly at random such a triangulation with 4 border vertices and n vertices, the size of the grid is almost surely n
Efficient Algorithms for Drawing Planar Graphs
, 1999
"... x 1 Introduction 1 1.1 Historical Background . . .............................. 4 1.2 Drawing Styles . ................................... 4 1.2.1 Polyline drawings .............................. 5 1.2.2 Planar drawings ............................... 5 1.2.3 Straight line drawings ................. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
x 1 Introduction 1 1.1 Historical Background . . .............................. 4 1.2 Drawing Styles . ................................... 4 1.2.1 Polyline drawings .............................. 5 1.2.2 Planar drawings ............................... 5 1.2.3 Straight line drawings ............................ 6 1.2.4 Orthogonal drawings . . ........................... 7 1.2.5 Grid drawings ................................ 8 1.3 Properties of Drawings ................................ 9 1.4 Scope of this Thesis .................................. 10 1.4.1 Rectangular drawings . . . ......................... 11 1.4.2 Orthogonal drawings . . ........................... 12 1.4.3 Boxrectangular drawings ........................... 14 1.4.4 Convex drawings . . ............................. 16 1.5 Summary ....................................... 16 2 Preliminaries 20 2.1 Basic Terminology .................................. 20 2.1.1 Graphs and Multigraphs ........................... 20 i CO...
RectangleofInfluence Drawings of FourConnected Plane Graphs (Extended Abstract)
, 2005
"... A rectangleofinfluence drawing of a plane graph G is no vertex in the proper inside of the axisparallel rectangle defined by the two ends of any edge. In this paper, weshow that any 4connected plane graph G rectangleofinfluence drawing in an integer grid such that W + H n, where n is the numb ..."
Abstract
 Add to MetaCart
A rectangleofinfluence drawing of a plane graph G is no vertex in the proper inside of the axisparallel rectangle defined by the two ends of any edge. In this paper, weshow that any 4connected plane graph G rectangleofinfluence drawing in an integer grid such that W + H n, where n is the numberofvertices in G, W is the width and H is the height of the grid. Thus the area W \ThetaH of the grid is at most d(n;1)=2e\Delta b(n;1)=2c. Our bounds on the grid sizes are optimal in a sense that there exist an infinite number of 4connected plane graphs whose drawings need grids such that W +H = n;1andW \Theta H = d(n ; 1)=2e\Delta b(n ; 1)=2c. We also showthatthe drawing can be found in linear time.