Results 1  10
of
105
WellStructured Transition Systems Everywhere!
 THEORETICAL COMPUTER SCIENCE
, 1998
"... Wellstructured transition systems (WSTS's) are a general class of infinite state systems for which decidability results rely on the existence of a wellquasiordering between states that is compatible with the transitions. In this article, we provide an extensive treatment of the WSTS idea and ..."
Abstract

Cited by 258 (9 self)
 Add to MetaCart
(Show Context)
Wellstructured transition systems (WSTS's) are a general class of infinite state systems for which decidability results rely on the existence of a wellquasiordering between states that is compatible with the transitions. In this article, we provide an extensive treatment of the WSTS idea and show several new results. Our improved definitions allow many examples of classical systems to be seen as instances of WSTS's.
Bisimulation Equivalence is Decidable for all ContextFree Processes
 Information and Computation
, 1995
"... Introduction Over the past decade much attention has been devoted to the study of process calculi such as CCS, ACP and CSP [13]. Of particular interest has been the study of the behavioural semantics of these calculi as given by labelled transition graphs. One important question is when processes c ..."
Abstract

Cited by 100 (15 self)
 Add to MetaCart
(Show Context)
Introduction Over the past decade much attention has been devoted to the study of process calculi such as CCS, ACP and CSP [13]. Of particular interest has been the study of the behavioural semantics of these calculi as given by labelled transition graphs. One important question is when processes can be said to exhibit the same behaviour, and a plethora of behavioural equivalences exists today. Their main rationale has been to capture behavioural aspects that language or trace equivalences do not take into account. The theory of finitestate systems and their equivalences can now be said to be wellestablished. There are many automatic verification tools for their analysis which incorporate equivalence checking. Sound and complete equational theories exist for the various known equivalences, an elegant example is [18]. One may be led to wonder what the results will look like for infinitestate systems. Although language equivalence is decidable
Modal and Temporal Logics for Processes
, 1996
"... this paper have been presented at the 4th European Summer School in Logic, Language and Information, University of Essex, 1992; at the Tempus Summer School for Algebraic and Categorical Methods in Computer Science, Masaryk University, Brno, 1993; and the Summer School in Logic Methods in Concurrency ..."
Abstract

Cited by 91 (2 self)
 Add to MetaCart
(Show Context)
this paper have been presented at the 4th European Summer School in Logic, Language and Information, University of Essex, 1992; at the Tempus Summer School for Algebraic and Categorical Methods in Computer Science, Masaryk University, Brno, 1993; and the Summer School in Logic Methods in Concurrency, Aarhus University, 1993. I would like to thank the organisers and the participants of these summer schools, and of the Banff higher order workshop. I would also like to thank Julian Bradfield for use of his Tex tree constructor for building derivation trees and Carron Kirkwood, Faron Moller, Perdita Stevens and David Walker for comments on earlier drafts.
Verification on Infinite Structures
, 2000
"... In this chapter, we present a hierarchy of infinitestate systems based on the primitive operations of sequential and parallel composition; the hierarchy includes a variety of commonlystudied classes of systems such as contextfree and pushdown automata, and Petri net processes. We then examine the ..."
Abstract

Cited by 91 (2 self)
 Add to MetaCart
In this chapter, we present a hierarchy of infinitestate systems based on the primitive operations of sequential and parallel composition; the hierarchy includes a variety of commonlystudied classes of systems such as contextfree and pushdown automata, and Petri net processes. We then examine the equivalence and regularity checking problems for these classes, with special emphasis on bisimulation equivalence, stressing the structural techniques which have been devised for solving these problems. Finally, we explore the model checking problem over these classes with respect to various linear and branchingtime temporal logics.
Model Checking for ContextFree Processes
, 1992
"... We develop a modelchecking algorithm that decides for a given contextfree process whether it satisfies a property written in the alternationfree modal mucalculus. The central idea behind this algorithm is to raise the standard iterative modelchecking techniques to higher order: in contrast to t ..."
Abstract

Cited by 88 (8 self)
 Add to MetaCart
(Show Context)
We develop a modelchecking algorithm that decides for a given contextfree process whether it satisfies a property written in the alternationfree modal mucalculus. The central idea behind this algorithm is to raise the standard iterative modelchecking techniques to higher order: in contrast to the usual approaches, in which the set of formulas that are satisfied by a certain state are iteratively computed, our algorithm iteratively computes a property transformer for each state class of the finite process representation. These property transformers can then simply be applied to solve the modelchecking problem. The complexity of our algorithm is linear in the size of the system's representation and exponential in the size of the property being investigated.
Infinite Results
, 1996
"... Recently there has been a spurt of activity in concurrency theory centred on the analysis of infinitestate systems. Much of this work stems from a task dedicated to the study in the recentlyconcluded ESPRIT BRA Concur2, and much of it has subsequently appeared in the proceedings of the annual CO ..."
Abstract

Cited by 66 (5 self)
 Add to MetaCart
Recently there has been a spurt of activity in concurrency theory centred on the analysis of infinitestate systems. Much of this work stems from a task dedicated to the study in the recentlyconcluded ESPRIT BRA Concur2, and much of it has subsequently appeared in the proceedings of the annual CONCUR conference. In this paper, we present an overview of various results obtained regarding expressivity, decidability, and complexity, focussing on the various techniques exploited in each case.
An Automatatheoretic Approach to Interprocedural Dataflow Analysis
, 1999
"... . We show that recent progress in extending the automatatheoretic approach to modelchecking beyond the class of finitestate processes finds a natural application in the area of interprocedural dataflow analysis. Keywords: Interprocedural dataflow analysis, modelchecking, automata theory, progra ..."
Abstract

Cited by 57 (10 self)
 Add to MetaCart
. We show that recent progress in extending the automatatheoretic approach to modelchecking beyond the class of finitestate processes finds a natural application in the area of interprocedural dataflow analysis. Keywords: Interprocedural dataflow analysis, modelchecking, automata theory, program optimisation. 1 Introduction Recent work [15, 24] has shown that modelchecking algorithms for abstract classes of infinitestate systems, like contextfree processes [1, 5] and pushdown processes [6], find a natural application in the area of dataflow analysis (DFA) for programming languages with procedures [16], usually called interprocedural DFA. A large variety of DFA problems, whose solution is required by optimising compilers in order to apply performance improving transformations, can be solved by means of a unique modelchecking technique. The techniques of [5, 6] are based on what could be called the fixpoint approach to modelchecking [24], in which the set of states satisfying...
Deciding BisimulationLike Equivalences with FiniteState Processes
, 1999
"... We show that characteristic formulae for nitestate systems up to bisimulationlike equivalences (e.g., strong and weak bisimilarity) can be given in the simple branchingtime temporal logic EF. Since EF is a very weak fragment of the modal µcalculus, model checking with EF is decidable for many mo ..."
Abstract

Cited by 49 (16 self)
 Add to MetaCart
(Show Context)
We show that characteristic formulae for nitestate systems up to bisimulationlike equivalences (e.g., strong and weak bisimilarity) can be given in the simple branchingtime temporal logic EF. Since EF is a very weak fragment of the modal µcalculus, model checking with EF is decidable for many more classes of infinitestate systems. This yields a general method for proving decidability of bisimulationlike equivalences between infinitestate processes and finitestate ones. We apply this method to the class of PAD processes, which strictly subsumes PA and pushdown (PDA) processes, showing that a large class of bisimulationlike equivalences (including, e.g., strong and weak bisimilarity) is decidable between PAD and finitestate processes. On the other hand, we also demonstrate that no `reasonable' bisimulationlike equivalence is decidable between stateextended PA processes and finitestate ones. Furthermore, weak bisimilarity with finitestate processes is shown to be undecidable even for state...