Results 1  10
of
25
Recursion Theory on the Reals and Continuoustime Computation
 Theoretical Computer Science
, 1995
"... We define a class of recursive functions on the reals analogous to the classical recursive functions on the natural numbers, corresponding to a conceptual analog computer that operates in continuous time. This class turns out to be surprisingly large, and includes many functions which are uncomp ..."
Abstract

Cited by 73 (4 self)
 Add to MetaCart
We define a class of recursive functions on the reals analogous to the classical recursive functions on the natural numbers, corresponding to a conceptual analog computer that operates in continuous time. This class turns out to be surprisingly large, and includes many functions which are uncomputable in the traditional sense.
Analog computers and recursive functions over the reals
 Journal of Complexity
, 2003
"... In this paper we show that Shannon’s General Purpose Analog Computer (GPAC) is equivalent to a particular class of recursive functions over the reals with the flavour of Kleene’s classical recursive function theory. We first consider the GPAC and several of its extensions to show that all these mode ..."
Abstract

Cited by 34 (19 self)
 Add to MetaCart
In this paper we show that Shannon’s General Purpose Analog Computer (GPAC) is equivalent to a particular class of recursive functions over the reals with the flavour of Kleene’s classical recursive function theory. We first consider the GPAC and several of its extensions to show that all these models have drawbacks and we introduce an alternative continuoustime model of computation that solve these problems. We also show that this new model preserve all the significant relations involving the previous models (namely, the equivalence with the differentially algebraic functions). We then continue with the topic of recursive functions over the reals, and we show full connections between functions generated by the model introduced so far and a particular class of recursive functions over the reals. 1
Iteration, Inequalities, and Differentiability in Analog Computers
, 1999
"... Shannon's General Purpose Analog Computer (GPAC) is an elegant model of analog computation in continuous time. In this paper, we consider whether the set G of GPACcomputable functions is closed under iteration, that is, whether for any function f(x) 2 G there is a function F (x; t) 2 G such t ..."
Abstract

Cited by 29 (15 self)
 Add to MetaCart
Shannon's General Purpose Analog Computer (GPAC) is an elegant model of analog computation in continuous time. In this paper, we consider whether the set G of GPACcomputable functions is closed under iteration, that is, whether for any function f(x) 2 G there is a function F (x; t) 2 G such that F (x; t) = f t (x) for nonnegative integers t. We show that G is not closed under iteration, but a simple extension of it is. In particular, if we relax the definition of the GPAC slightly to include unique solutions to boundary value problems, or equivalently if we allow functions x k (x) that sense inequalities in a dierentiable way, the resulting class, which we call G + k , is closed under iteration. Furthermore, G + k includes all primitive recursive functions, and has the additional closure property that if T (x) is in G+k , then any function of x computable by a Turing machine in T (x) time is also.
A Survey of ContinuousTime Computation Theory
 Advances in Algorithms, Languages, and Complexity
, 1997
"... Motivated partly by the resurgence of neural computation research, and partly by advances in device technology, there has been a recent increase of interest in analog, continuoustime computation. However, while specialcase algorithms and devices are being developed, relatively little work exists o ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
Motivated partly by the resurgence of neural computation research, and partly by advances in device technology, there has been a recent increase of interest in analog, continuoustime computation. However, while specialcase algorithms and devices are being developed, relatively little work exists on the general theory of continuoustime models of computation. In this paper, we survey the existing models and results in this area, and point to some of the open research questions. 1 Introduction After a long period of oblivion, interest in analog computation is again on the rise. The immediate cause for this new wave of activity is surely the success of the neural networks "revolution", which has provided hardware designers with several new numerically based, computationally interesting models that are structurally sufficiently simple to be implemented directly in silicon. (For designs and actual implementations of neural models in VLSI, see e.g. [30, 45]). However, the more fundamental...
Polynomial differential equations compute all real computable functions on computable compact intervals
, 2007
"... ..."
Some recent developments on Shannon’s general purpose analog computer
 Mathematical Logic Quarterly
"... This paper revisits one of the first models of analog computation, the General Purpose Analog Computer (GPAC). In particular, we restrict our attention to the improved model presented in [11] and we show that it can be further refined. With this we prove the following: (i) the previous model can be ..."
Abstract

Cited by 18 (7 self)
 Add to MetaCart
This paper revisits one of the first models of analog computation, the General Purpose Analog Computer (GPAC). In particular, we restrict our attention to the improved model presented in [11] and we show that it can be further refined. With this we prove the following: (i) the previous model can be simplified; (ii) it admits extensions having close connections with the class of smooth continuous time dynamical systems. As a consequence, we conclude that some of these extensions achieve Turing universality. Finally, it is shown that if we introduce a new notion of computability for the GPAC, based on ideas from computable analysis, then one can compute transcendentally transcendental functions such as the Gamma function or Riemann’s Zeta function. 1
Real recursive functions and their hierarchy
, 2004
"... ... onsidered, first as a model of analog computation, and second to obtain analog characterizations of classical computational complexity classes (Unconventional Models of Computation, UMC 2002, Lecture Notes in Computer Science, Vol. 2509, Springer, Berlin, pp. 1–14). However, one of the operators ..."
Abstract

Cited by 17 (2 self)
 Add to MetaCart
... onsidered, first as a model of analog computation, and second to obtain analog characterizations of classical computational complexity classes (Unconventional Models of Computation, UMC 2002, Lecture Notes in Computer Science, Vol. 2509, Springer, Berlin, pp. 1–14). However, one of the operators introduced in the seminal paper by Moore (1996), the minimalization operator, has not been considered: (a) although differential recursion (the analog counterpart of classical recurrence) is, in some extent, directly implementable in the General Purpose Analog Computer of Claude Shannon, analog minimalization is far from physical realizability, and (b) analog minimalization was borrowed from classical recursion theory and does not fit well the analytic realm of analog computation. In this paper, we show that a most natural operator captured from analysis—the operator of taking a limit—can be used properly to enhance the theory of recursion over the reals, providing good solutions to puzzling problems raised by the original model.
Computations via experiments with kinematic systems
, 2004
"... Consider the idea of computing functions using experiments with kinematic systems. We prove that for any set A of natural numbers there exists a 2dimensional kinematic system BA with a single particle P whose observable behaviour decides n ∈ A for all n ∈ N. The system is a bagatelle and can be des ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
Consider the idea of computing functions using experiments with kinematic systems. We prove that for any set A of natural numbers there exists a 2dimensional kinematic system BA with a single particle P whose observable behaviour decides n ∈ A for all n ∈ N. The system is a bagatelle and can be designed to operate under (a) Newtonian mechanics or (b) Relativistic mechanics. The theorem proves that valid models of mechanical systems can compute all possible functions on discrete data. The proofs show how any information (coded by some A) can be embedded in the structure of a simple kinematic system and retrieved by simple observations of its behaviour. We reflect on this undesirable situation and argue that mechanics must be extended to include a formal theory for performing experiments, which includes the construction of systems. We conjecture that in such an extended mechanics the functions computed by experiments are precisely those computed by algorithms. We set these theorems and ideas in the context of the literature on the general problem “Is physical behaviour computable? ” and state some open problems.
Elementarily computable functions over the real numbers and Rsubrecursive functions
 THEORETICAL COMPUTER SCIENCE
, 2005
"... We present an analog and machineindependent algebraic characterization of elementarily computable functions over the real numbers in the sense of recursive analysis: we prove that they correspond to the smallest class of functions that contains some basic functions, and closed by composition, linea ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
We present an analog and machineindependent algebraic characterization of elementarily computable functions over the real numbers in the sense of recursive analysis: we prove that they correspond to the smallest class of functions that contains some basic functions, and closed by composition, linear integration, and a simple limit schema. We generalize this result to all higher levels of the Grzegorczyk Hierarchy. This paper improves several previous partial characterizations and has a dual interest: • Concerning recursive analysis, our results provide machineindependent characterizations of natural classes of computable functions over the real numbers, allowing to define these classes without usual considerations on higherorder (type 2) Turing machines. • Concerning analog models, our results provide a characterization of the power of a natural class of analog models over the real numbers and provide new insights for understanding the relations between several analog computational models.