Results 11  20
of
437
Constraint propagation
 Handbook of Constraint Programming
, 2006
"... Constraint propagation is a form of inference, not search, and as such is more ”satisfying”, both technically and aesthetically. —E.C. Freuder, 2005. Constraint reasoning involves various types of techniques to tackle the inherent ..."
Abstract

Cited by 51 (3 self)
 Add to MetaCart
Constraint propagation is a form of inference, not search, and as such is more ”satisfying”, both technically and aesthetically. —E.C. Freuder, 2005. Constraint reasoning involves various types of techniques to tackle the inherent
Learning DependencyBased Compositional Semantics
"... Compositional question answering begins by mapping questions to logical forms, but training a semantic parser to perform this mapping typically requires the costly annotation of the target logical forms. In this paper, we learn to map questions to answers via latent logical forms, which are induced ..."
Abstract

Cited by 49 (1 self)
 Add to MetaCart
Compositional question answering begins by mapping questions to logical forms, but training a semantic parser to perform this mapping typically requires the costly annotation of the target logical forms. In this paper, we learn to map questions to answers via latent logical forms, which are induced automatically from questionanswer pairs. In tackling this challenging learning problem, we introduce a new semantic representation which highlights a parallel between dependency syntax and efficient evaluation of logical forms. On two standard semantic parsing benchmarks (GEO and JOBS), our system obtains the highest published accuracies, despite requiring no annotated logical forms. 1
A New Look at Survey Propagation and its Generalizations
"... We study the survey propagation algorithm [19, 5, 4], which is an iterative technique that appears to be very effective in solving random kSAT problems even with densities close to threshold. We first describe how any SAT formula can be associated with a novel family of Markov random fields (MRFs), ..."
Abstract

Cited by 46 (12 self)
 Add to MetaCart
We study the survey propagation algorithm [19, 5, 4], which is an iterative technique that appears to be very effective in solving random kSAT problems even with densities close to threshold. We first describe how any SAT formula can be associated with a novel family of Markov random fields (MRFs), parameterized by a real number ρ. We then show that applying belief propagation— a wellknown “messagepassing” technique—to this family of MRFs recovers various algorithms, ranging from pure survey propagation at one extreme (ρ = 1) to standard belief propagation on the uniform distribution over SAT assignments at the other extreme (ρ = 0). Configurations in these MRFs have a natural interpretation as generalized satisfiability assignments, on which a partial order can be defined. We isolate cores as minimal elements in this partial
Factored Planning: How, When, and When Not
 In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI2006
, 2006
"... Automated domain factoring, and planning methods that utilize them, have long been of interest to planning researchers. Recent work in this area yielded new theoretical insight and algorithms, but left many questions open: How to decompose a domain into factors? How to work with these factors? And w ..."
Abstract

Cited by 44 (6 self)
 Add to MetaCart
Automated domain factoring, and planning methods that utilize them, have long been of interest to planning researchers. Recent work in this area yielded new theoretical insight and algorithms, but left many questions open: How to decompose a domain into factors? How to work with these factors? And whether and when decompositionbased methods are useful? This paper provides theoretical analysis that answers many of these questions: it proposes a novel approach to factored planning; proves its theoretical superiority over previous methods; provides insight into how to factor domains; and uses its novel complexity results to analyze when factored planning is likely to perform well, and when not. It also establishes the key role played by the domain’s causal graph in the complexity analysis of planning algorithms.
The alldifferent Constraint: A Survey
, 2001
"... The constraint of difference is known to the constraint programming community since Lauriere introduced Alice in 1978. Since then, several strategies have been designed to solve the alldifferent constraint. This paper surveys the most important developments over the years regarding the alldifferent ..."
Abstract

Cited by 42 (1 self)
 Add to MetaCart
The constraint of difference is known to the constraint programming community since Lauriere introduced Alice in 1978. Since then, several strategies have been designed to solve the alldifferent constraint. This paper surveys the most important developments over the years regarding the alldifferent constraint. First we summarize the underlying concepts and results from graph theory and integer programming. Then we give an overview and an abstract comparison of different solution strategies. In addition, the symmetric alldifferent constraint is treated. Finally, we show how to apply costbased filtering to the alldifferent constraint.
Mdpop: Faithful distributed implementation of efficient social choice problems
 In AAMAS’06  Autonomous Agents and Multiagent Systems
, 2006
"... In the efficient social choice problem, the goal is to assign values, subject to side constraints, to a set of variables to maximize the total utility across a population of agents, where each agent has private information about its utility function. In this paper we model the social choice problem ..."
Abstract

Cited by 41 (15 self)
 Add to MetaCart
In the efficient social choice problem, the goal is to assign values, subject to side constraints, to a set of variables to maximize the total utility across a population of agents, where each agent has private information about its utility function. In this paper we model the social choice problem as a distributed constraint optimization problem (DCOP), in which each agent can communicate with other agents that share an interest in one or more variables. Whereas existing DCOP algorithms can be easily manipulated by an agent, either by misreporting private information or deviating from the algorithm, we introduce MDPOP, the first DCOP algorithm that provides a faithful distributed implementation for efficient social choice. This provides a concrete example of how the methods of mechanism design can be unified with those of distributed optimization. Faithfulness ensures that no agent can benefit by unilaterally deviating from any aspect of the protocol, neither informationrevelation, computation, nor communication, and whatever the private information of other agents. We allow for payments by agents to a central bank, which is the only central authority that we require. To achieve faithfulness, we carefully integrate the VickreyClarkeGroves (VCG) mechanism with the DPOP algorithm, such that each agent is only asked to perform computation, report
Auditing Compliance with a Hippocratic Database
 IN PROC. OF VLDB
, 2004
"... We introduce an auditing framework for determining whether a database system is adhering to its data disclosure policies. Users formulate audit expressions to specify the (sensitive) data subject to disclosure review. An audit component accepts audit expressions and returns all queries (deemed ..."
Abstract

Cited by 38 (6 self)
 Add to MetaCart
We introduce an auditing framework for determining whether a database system is adhering to its data disclosure policies. Users formulate audit expressions to specify the (sensitive) data subject to disclosure review. An audit component accepts audit expressions and returns all queries (deemed "suspicious") that accessed the specified data during their execution. The overhead
Constraint Answer Set Solving
"... Abstract. We present a new approach to integrating Constraint Processing (CP) techniques into Answer Set Programming (ASP). Based on an alternative semantic approach, we develop an algorithmic framework for conflictdriven ASP solving that exploits CP solving capacities. A significant technical issu ..."
Abstract

Cited by 33 (5 self)
 Add to MetaCart
Abstract. We present a new approach to integrating Constraint Processing (CP) techniques into Answer Set Programming (ASP). Based on an alternative semantic approach, we develop an algorithmic framework for conflictdriven ASP solving that exploits CP solving capacities. A significant technical issue concerns the combination of conflict information from different solver types. We have implemented our approach, combining ASP solver clingo with the generic CP solver gecode, and we empirically investigate its computational impact. 1
Collaborative Multiagent Reinforcement Learning by Payoff Propagation
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... In this article we describe a set of scalable techniques for learning the behavior of a group of agents in a collaborative multiagent setting. As a basis we use the framework of coordination graphs of Guestrin, Koller, and Parr (2002a) which exploits the dependencies between agents to decompose t ..."
Abstract

Cited by 32 (2 self)
 Add to MetaCart
In this article we describe a set of scalable techniques for learning the behavior of a group of agents in a collaborative multiagent setting. As a basis we use the framework of coordination graphs of Guestrin, Koller, and Parr (2002a) which exploits the dependencies between agents to decompose the global payoff function into a sum of local terms. First, we deal with the singlestate case and describe a payoff propagation algorithm that computes the individual actions that approximately maximize the global payoff function. The method can be viewed as the decisionmaking analogue of belief propagation in Bayesian networks. Second, we focus on learning the behavior of the agents in sequential decisionmaking tasks. We introduce different modelfree reinforcementlearning techniques, unitedly called Sparse Cooperative Qlearning, which approximate the global actionvalue function based on the topology of a coordination graph, and perform updates using the contribution of the individual agents to the maximal global action value. The combined use of an edgebased decomposition of the actionvalue function and the payoff propagation algorithm for efficient action selection, result in an approach that scales only linearly in the problem size. We provide experimental evidence that our method outperforms related multiagent reinforcementlearning methods based on temporal differences.
Propositional Satisfiability and Constraint Programming: a Comparative Survey
 ACM Computing Surveys
, 2006
"... Propositional Satisfiability (SAT) and Constraint Programming (CP) have developed as two relatively independent threads of research, crossfertilising occasionally. These two approaches to problem solving have a lot in common, as evidenced by similar ideas underlying the branch and prune algorithms ..."
Abstract

Cited by 32 (4 self)
 Add to MetaCart
Propositional Satisfiability (SAT) and Constraint Programming (CP) have developed as two relatively independent threads of research, crossfertilising occasionally. These two approaches to problem solving have a lot in common, as evidenced by similar ideas underlying the branch and prune algorithms that are most successful at solving both kinds of problems. They also exhibit differences in the way they are used to state and solve problems, since SAT’s approach is in general a blackbox approach, while CP aims at being tunable and programmable. This survey overviews the two areas in a comparative way, emphasising the similarities and differences between the two and the points where we feel that one technology can benefit from ideas or experience acquired