Results 1  10
of
69
A Comparison of Methods for Multiclass Support Vector Machines
 IEEE TRANS. NEURAL NETWORKS
, 2002
"... Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary class ..."
Abstract

Cited by 590 (15 self)
 Add to MetaCart
Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary classifiers. Some authors also proposed methods that consider all classes at once. As it is computationally more expensive to solve multiclass problems, comparisons of these methods using largescale problems have not been seriously conducted. Especially for methods solving multiclass SVM in one step, a much larger optimization problem is required so up to now experiments are limited to small data sets. In this paper we give decomposition implementations for two such “alltogether” methods. We then compare their performance with three methods based on binary classifications: “oneagainstall,” “oneagainstone,” and directed acyclic graph SVM (DAGSVM). Our experiments indicate that the “oneagainstone” and DAG methods are more suitable for practical use than the other methods. Results also show that for large problems methods by considering all data at once in general need fewer support vectors.
Multicategory Support Vector Machines, theory, and application to the classification of microarray data and satellite radiance data
 Journal of the American Statistical Association
, 2004
"... Twocategory support vector machines (SVM) have been very popular in the machine learning community for classi � cation problems. Solving multicategory problems by a series of binary classi � ers is quite common in the SVM paradigm; however, this approach may fail under various circumstances. We pro ..."
Abstract

Cited by 179 (18 self)
 Add to MetaCart
Twocategory support vector machines (SVM) have been very popular in the machine learning community for classi � cation problems. Solving multicategory problems by a series of binary classi � ers is quite common in the SVM paradigm; however, this approach may fail under various circumstances. We propose the multicategory support vector machine (MSVM), which extends the binary SVM to the multicategory case and has good theoretical properties. The proposed method provides a unifying framework when there are either equal or unequal misclassi � cation costs. As a tuning criterion for the MSVM, an approximate leaveoneout crossvalidation function, called Generalized Approximate Cross Validation, is derived, analogous to the binary case. The effectiveness of the MSVM is demonstrated through the applications to cancer classi � cation using microarray data and cloud classi � cation with satellite radiance pro � les.
Proximal support vector machine classifiers
 Proceedings KDD2001: Knowledge Discovery and Data Mining
, 2001
"... Abstract—A new approach to support vector machine (SVM) classification is proposed wherein each of two data sets are proximal to one of two distinct planes that are not parallel to each other. Each plane is generated such that it is closest to one of the two data sets and as far as possible from the ..."
Abstract

Cited by 114 (14 self)
 Add to MetaCart
Abstract—A new approach to support vector machine (SVM) classification is proposed wherein each of two data sets are proximal to one of two distinct planes that are not parallel to each other. Each plane is generated such that it is closest to one of the two data sets and as far as possible from the other data set. Each of the two nonparallel proximal planes is obtained by a single MATLAB command as the eigenvector corresponding to a smallest eigenvalue of a generalized eigenvalue problem. Classification by proximity to two distinct nonlinear surfaces generated by a nonlinear kernel also leads to two simple generalized eigenvalue problems. The effectiveness of the proposed method is demonstrated by tests on simple examples as well as on a number of public data sets. These examples show the advantages of the proposed approach in both computation time and test set correctness. Index Terms—Support vector machines, proximal classification, generalized eigenvalues. 1
The analysis of decomposition methods for support vector machines
 IEEE Transactions on Neural Networks
, 1999
"... Abstract. The decomposition method is currently one of the major methods for solving support vector machines. An important issue of this method is the selection of working sets. In this paper through the design of decomposition methods for boundconstrained SVM formulations we demonstrate that the w ..."
Abstract

Cited by 109 (19 self)
 Add to MetaCart
Abstract. The decomposition method is currently one of the major methods for solving support vector machines. An important issue of this method is the selection of working sets. In this paper through the design of decomposition methods for boundconstrained SVM formulations we demonstrate that the working set selection is not a trivial task. Then from the experimental analysis we propose a simple selection of the working set which leads to faster convergences for difficult cases. Numerical experiments on different types of problems are conducted to demonstrate the viability of the proposed method.
A Dual Coordinate Descent Method for Largescale Linear SVM
"... In many applications, data appear with a huge number of instances as well as features. Linear Support Vector Machines (SVM) is one of the most popular tools to deal with such largescale sparse data. This paper presents a novel dual coordinate descent method for linear SVM with L1 and L2loss functi ..."
Abstract

Cited by 105 (11 self)
 Add to MetaCart
In many applications, data appear with a huge number of instances as well as features. Linear Support Vector Machines (SVM) is one of the most popular tools to deal with such largescale sparse data. This paper presents a novel dual coordinate descent method for linear SVM with L1 and L2loss functions. The proposed method is simple and reaches an ɛaccurate solution in O(log(1/ɛ)) iterations. Experiments indicate that our method is much faster than state of the art solvers such as Pegasos, TRON, SVM perf, and a recent primal coordinate descent implementation. 1.
Lagrangian Support Vector Machines
, 2000
"... An implicit Lagrangian for the dual of a simple reformulation of the standard quadratic program of a linear support vector machine is proposed. This leads to the minimization of an unconstrained differentiable convex function in a space of dimensionality equal to the number of classified points. Thi ..."
Abstract

Cited by 91 (11 self)
 Add to MetaCart
An implicit Lagrangian for the dual of a simple reformulation of the standard quadratic program of a linear support vector machine is proposed. This leads to the minimization of an unconstrained differentiable convex function in a space of dimensionality equal to the number of classified points. This problem is solvable by an extremely simple linearly convergent Lagrangian support vector machine (LSVM) algorithm. LSVM requires the inversion at the outset of a single matrix of the order of the much smaller dimensionality of the original input space plus one. The full algorithm is given in this paper in 11 lines of MATLAB code without any special optimization tools such as linear or quadratic programming solvers. This LSVM code can be used "as is" to solve classification problems with millions of points. For example, 2 million points in 10 dimensional input space were classified by a linear surface in 82 minutes on a Pentium III 500 MHz notebook with 384 megabytes of memory (and additional swap space), and in 7 minutes on a 250 MHz UltraSPARC II processor with 2 gigabytes of memory. Other standard classification test problems were also solved. Nonlinear kernel classification can also be solved by LSVM. Although it does not scale up to very large problems, it can handle any positive semidefinite kernel and is guaranteed to converge.
Everything Old Is New Again: A Fresh Look at Historical Approaches
 in Machine Learning. PhD thesis, MIT
, 2002
"... 2 Everything Old Is New Again: A Fresh Look at Historical ..."
Abstract

Cited by 88 (6 self)
 Add to MetaCart
2 Everything Old Is New Again: A Fresh Look at Historical
A fast iterative nearest point algorithm for support vector machine classifier design
 IEEE Transactions on Neural Networks
, 2000
"... Abstract—In this paper we give a new fast iterative algorithm for support vector machine (SVM) classifier design. The basic problem treated is one that does not allow classification violations. The problem is converted to a problem of computing the nearest point between two convex polytopes. The sui ..."
Abstract

Cited by 68 (3 self)
 Add to MetaCart
Abstract—In this paper we give a new fast iterative algorithm for support vector machine (SVM) classifier design. The basic problem treated is one that does not allow classification violations. The problem is converted to a problem of computing the nearest point between two convex polytopes. The suitability of two classical nearest point algorithms, due to Gilbert, and Mitchell et al., is studied. Ideas from both these algorithms are combined and modified to derive our fast algorithm. For problems which require classification violations to be allowed, the violations are quadratically penalized and an idea due to Cortes and Vapnik and Frieß is used to convert it to a problem in which there are no classification violations. Comparative computational evaluation of our algorithm against powerful SVM methods such as Platt's sequential minimal optimization shows that our algorithm is very competitive. Index Terms—Classification, nearest point algorithm, quadratic programming, support vector machine. I.
Interior point methods for massive support vector machines
, 2003
"... We investigate the use of interiorpoint methods for solving quadratic programming problems with a small number of linear constraints, where the quadratic term consists of a lowrank update to a positive semidefinite matrix. Several formulations of the support vector machine fit into this category ..."
Abstract

Cited by 45 (1 self)
 Add to MetaCart
We investigate the use of interiorpoint methods for solving quadratic programming problems with a small number of linear constraints, where the quadratic term consists of a lowrank update to a positive semidefinite matrix. Several formulations of the support vector machine fit into this category. An interesting feature of these particular problems is the volume of data, which can lead to quadratic programs with between 10 and 100 million variables and, if written explicitly, a dense Q matrix. Our code is based on OOQP, an objectoriented interiorpoint code, with the linear algebra specialized for the support vector machine application. For the targeted massive problems, all of the data is stored out of core and we overlap computation and input/output to reduce overhead. Results are reported for several linear support vector machine formulations demonstrating that the method is reliable and scalable. Key words. support vector machine, interiorpoint method, linear algebra AMS subject classifications.
A Study on Reduced Support Vector Machines
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2003
"... Recently the Reduced Support Vector Machine (RSVM) was proposed as an alternate of the standard SVM. Motivated by resolving the difficulty on handling large data sets using SVM with nonlinear kernels, it preselects a subset of data as support vectors and solves a smaller optimization problem. How ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
Recently the Reduced Support Vector Machine (RSVM) was proposed as an alternate of the standard SVM. Motivated by resolving the difficulty on handling large data sets using SVM with nonlinear kernels, it preselects a subset of data as support vectors and solves a smaller optimization problem. However, several issues of its practical use have not been fully discussed yet. For example, we do not know if it possesses comparable generalization ability as the standard SVM. In addition, we would like to see for how large problems RSVM outperforms SVM on training time. In this paper we show that the RSVM formulation is already in a form of linear SVM and discuss four RSVM implementations. Experiments indicate that in general the test accuracy of RSVM are a little lower than that of the standard SVM. In addition, for problems with up to tens of thousands of data, if the percentage of support vectors is not high, existing implementations for SVM is quite competitive on the training time. Thus, from this empirical study, RSVM will be mainly useful for either larger problems or those with many support vectors. Experiments in this paper also serve as comparisons of (1) different implementations for linear SVM; and (2) standard SVM using linear and quadratic cost functions.