Results 1  10
of
12
Topological Incompleteness and Order Incompleteness of the Lambda Calculus
 ACM TRANSACTIONS ON COMPUTATIONAL LOGIC
, 2001
"... A model of the untyped lambda calculus induces a lambda theory, i.e., a congruence relation on λterms closed under ff and ficonversion. A semantics (= class of models) of the lambda calculus is incomplete if there exists a lambda theory which is not induced by any model in the semantics. In th ..."
Abstract

Cited by 23 (15 self)
 Add to MetaCart
A model of the untyped lambda calculus induces a lambda theory, i.e., a congruence relation on λterms closed under ff and ficonversion. A semantics (= class of models) of the lambda calculus is incomplete if there exists a lambda theory which is not induced by any model in the semantics. In this paper we introduce a new technique to prove the incompleteness of a wide range of lambda calculus semantics, including the strongly stable one, whose incompleteness had been conjectured by BastoneroGouy [6, 7] and by Berline [9]. The main results of the paper are a topological incompleteness theorem and an order incompleteness theorem. In the first one we show the incompleteness of the lambda calculus semantics given in terms of topological models whose topology satisfies a property of connectedness. In the second one we prove the incompleteness of the class of partially ordered models with finitely many connected components w.r.t. the Alexandroff topology. A further result of the paper is a proof of the completeness of the semantics of the lambda calculus given in terms of topological models whose topology is nontrivial and metrizable.
Graph lambda theories
 Journal of Logic and Computation
, 2004
"... Lambda theories are equational extensions of the untyped lambda calculus that are closed under derivation. The set of lambda theories is naturally equipped with a structure of complete lattice, where the meet of a family of lambda theories is their intersection, and the join is the least lambda theo ..."
Abstract

Cited by 19 (11 self)
 Add to MetaCart
Lambda theories are equational extensions of the untyped lambda calculus that are closed under derivation. The set of lambda theories is naturally equipped with a structure of complete lattice, where the meet of a family of lambda theories is their intersection, and the join is the least lambda theory containing their union. In this paper we study the structure of the lattice of lambda theories by universal algebraic methods. We show that nontrivial quasiidentities in the language of lattices hold in the lattice of lambda theories, while every nontrivial lattice identity fails in the lattice of lambda theories if the language of lambda calculus is enriched by a suitable finite number of constants. We also show that there exists a sublattice of the lattice of lambda theories which satisfies: (i) a restricted form of distributivity, called meet semidistributivity; and (ii) a nontrivial identity in the language of lattices enriched by the relative product of binary relations.
A Continuum of Theories of Lambda Calculus Without Semantics
 16TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2001), IEEE COMPUTER
, 2001
"... In this paper we give a topological proof of the following result: There exist 2 @0 lambda theories of the untyped lambda calculus without a model in any semantics based on Scott's view of models as partially ordered sets and of functions as monotonic functions. As a consequence of this result, we ..."
Abstract

Cited by 16 (11 self)
 Add to MetaCart
In this paper we give a topological proof of the following result: There exist 2 @0 lambda theories of the untyped lambda calculus without a model in any semantics based on Scott's view of models as partially ordered sets and of functions as monotonic functions. As a consequence of this result, we positively solve the conjecture, stated by BastoneroGouy [6, 7] and by Berline [10], that the strongly stable semantics is incomplete. 1
A formal calculus for informal equality with binding
 In WoLLIC’07: 14th Workshop on Logic, Language, Information and Computation, volume 4576 of LNCS
, 2007
"... Abstract. In informal mathematical usage we often reason using languages with binding. We usually find ourselves placing captureavoidance constraints on where variables can and cannot occur free. We describe a logical derivation system which allows a direct formalisation of such assertions, along w ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
Abstract. In informal mathematical usage we often reason using languages with binding. We usually find ourselves placing captureavoidance constraints on where variables can and cannot occur free. We describe a logical derivation system which allows a direct formalisation of such assertions, along with a direct formalisation of their constraints. We base our logic on equality, probably the simplest available judgement form. In spite of this, we can axiomatise systems of logic and computation such as firstorder logic or the lambdacalculus in a very direct and natural way. We investigate the theory of derivations, prove a suitable semantics sound and complete, and discuss existing and future research. 1
Boolean algebras for lambda calculus
 21TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2006), IEEE COMPUTER
, 2006
"... In this paper we show that the Stone representation theorem for Boolean algebras can be generalized to combinatory algebras. In every combinatory algebra there is a Boolean algebra of central elements (playing the role of idempotent elements in rings), whose operations are defined by suitable combin ..."
Abstract

Cited by 10 (8 self)
 Add to MetaCart
In this paper we show that the Stone representation theorem for Boolean algebras can be generalized to combinatory algebras. In every combinatory algebra there is a Boolean algebra of central elements (playing the role of idempotent elements in rings), whose operations are defined by suitable combinators. Central elements are used to represent any combinatory algebra as a Boolean product of directly indecomposable combinatory algebras (i.e., algebras which cannot be decomposed as the Cartesian product of two other nontrivial algebras). Central elements are also used to provide applications of the representation theorem to lambda calculus. We show that the indecomposable semantics (i.e., the semantics of lambda calculus given in terms of models of lambda calculus, which are directly indecomposable as combinatory algebras) includes the continuous, stable and strongly stable semantics, and the term models of all semisensible lambda theories. In one of the main results of the paper we show that the indecomposable semantics is equationally incomplete, and this incompleteness is as wide as possible: for every recursively enumerable lambda theory T, there is a continuum of lambda theories including T which are omitted by the indecomposable semantics.
A.: Nominal algebra
, 2006
"... Abstract. Nominal terms are a termlanguage used to accurately and expressively represent systems with binding. We present Nominal Algebra (NA), a theory of algebraic equality on nominal terms. Builtin support for binding in the presence of metavariables allows NA to closely mirror informal mathem ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
Abstract. Nominal terms are a termlanguage used to accurately and expressively represent systems with binding. We present Nominal Algebra (NA), a theory of algebraic equality on nominal terms. Builtin support for binding in the presence of metavariables allows NA to closely mirror informal mathematical usage and notation, where expressions such as λa.t or ∀a.φ are common, in which metavariables t and φ explicitly occur in the scope of a variable a. We describe the syntax and semantics of NA, and provide a sound and complete proof system for it. We also give some examples of axioms; other work has considered sets of axioms of particular interest in some detail. 1.
A study of substitution, using nominal techniques and FraenkelMostowki sets
"... FraenkelMostowski (FM) set theory delivers a model of names and alphaequivalence. This model, now generally called the ‘nominal ’ model, delivers inductive datatypes of syntax with alphaequivalence — rather than inductive datatypes of syntax, quotiented by alphaequivalence. The treatment of name ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
FraenkelMostowski (FM) set theory delivers a model of names and alphaequivalence. This model, now generally called the ‘nominal ’ model, delivers inductive datatypes of syntax with alphaequivalence — rather than inductive datatypes of syntax, quotiented by alphaequivalence. The treatment of names and alphaequivalence extends to the entire sets universe. This has proven useful for developing ‘nominal ’ theories of reasoning and programming on syntax with alphaequivalence, because a sets universe includes elements representing functions, predicates, and behaviour. Often, we want names and alphaequivalence to model captureavoiding substitution. In this paper we show that FM set theory models captureavoiding subsitution for names in much the same way as it models alphaequivalence; as an operation valid for the entire sets universe which coincides with the usual (inductively defined) operation on inductive datatypes. In fact, more than one substitution action is possible (they all agree on sets representing
Lambda calculus: models and theories
 Proceedings of the Third AMAST Workshop on Algebraic Methods in Language Processing (AMiLP2003), number 21 in TWLT Proceedings, pages 39–54, University of Twente, 2003. Invited Lecture
"... In this paper we give an outline of recent results concerning theories and models of the untyped lambda calculus. Algebraic and topological methods have been applied to study the structure of the lattice of λtheories, the equational incompleteness of lambda calculus semantics, and the λtheories in ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
In this paper we give an outline of recent results concerning theories and models of the untyped lambda calculus. Algebraic and topological methods have been applied to study the structure of the lattice of λtheories, the equational incompleteness of lambda calculus semantics, and the λtheories induced by graph models of lambda calculus.
Applying Universal Algebra to Lambda Calculus
, 2007
"... The aim of this paper is double. From one side we survey the knowledge we have acquired these last ten years about the lattice of all λtheories ( = equational extensions of untyped λcalculus) and the models of lambda calculus via universal algebra. This includes positive or negative answers to se ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
The aim of this paper is double. From one side we survey the knowledge we have acquired these last ten years about the lattice of all λtheories ( = equational extensions of untyped λcalculus) and the models of lambda calculus via universal algebra. This includes positive or negative answers to several questions raised in these years as well as several independent results, the state of the art about the longstanding open questions concerning the representability of λtheories as theories of models, and 26 open problems. On the other side, against the common belief, we show that lambda calculus and combinatory logic satisfy interesting algebraic properties. In fact the Stone representation theorem for Boolean algebras can be generalized to combinatory algebras and λabstraction algebras. In every combinatory and λabstraction algebra there is a Boolean algebra of central elements (playing the role of idempotent elements in rings). Central elements are used to represent any combinatory and λabstraction algebra as a weak Boolean product of directly indecomposable algebras (i.e., algebras which cannot be decomposed as the Cartesian product of two other nontrivial algebras). Central elements are also used to provide applications of the representation theorem to lambda calculus. We show that the indecomposable semantics (i.e., the semantics of lambda calculus given in terms of models of lambda calculus, which are directly indecomposable as combinatory algebras) includes the continuous, stable and strongly stable semantics, and the term models of all semisensible λtheories. In one of the main results of the paper we show that the indecomposable semantics is equationally incomplete, and this incompleteness is as wide as possible.
Resource combinatory algebras
"... Abstract. We initiate a purely algebraic study of Ehrhard and Regnier’s resource λcalculus, by introducing three equational classes of algebras: resource combinatory algebras, resource lambdaalgebras and resource lambdaabstraction algebras. We establish the relations between them, laying down fou ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. We initiate a purely algebraic study of Ehrhard and Regnier’s resource λcalculus, by introducing three equational classes of algebras: resource combinatory algebras, resource lambdaalgebras and resource lambdaabstraction algebras. We establish the relations between them, laying down foundations for a model theory of resource λcalculus. We also show that the ideal completion of a resource combinatory (resp. lambda, lambdaabstraction) algebra induces a “classical ” combinatory (resp. lambda, lambdaabstraction) algebra, and that any model of the classical λcalculus raising from a resource lambdaalgebra determines a λtheory which equates all terms having the same Böhm tree. 1