Results 1  10
of
35
A New Method for Solving Hard Satisfiability Problems
 AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract

Cited by 683 (21 self)
 Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approaches such as the DavisPutnam procedure or resolution. We also show that GSAT can solve structured satisfiability problems quickly. In particular, we solve encodings of graph coloring problems, Nqueens, and Boolean induction. General application strategies and limitations of the approach are also discussed. GSAT is best viewed as a modelfinding procedure. Its good performance suggests that it may be advantageous to reformulate reasoning tasks that have traditionally been viewed as theoremproving problems as modelfinding tasks.
Hard and Easy Distributions of SAT Problems
, 1992
"... We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to ..."
Abstract

Cited by 219 (17 self)
 Add to MetaCart
We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to generate random formulas that are hard, that is, for which satisfiability testing is quite difficult. Our results provide a benchmark for the evaluation of satisfiabilitytesting procedures. Introduction Many computational tasks of interest to AI, to the extent that they can be precisely characterized at all, can be shown to be NPhard in their most general form. However, there is fundamental disagreement, at least within the AI community, about the implications of this. It is claimed on the one hand that since the performance of algorithms designed to solve NPhard tasks degrades rapidly with small increases in input size, something will need to be given up to obtain acceptable behavior....
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 127 (3 self)
 Add to MetaCart
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
Finding Hard Instances of the Satisfiability Problem: A Survey
, 1997
"... . Finding sets of hard instances of propositional satisfiability is of interest for understanding the complexity of SAT, and for experimentally evaluating SAT algorithms. In discussing this we consider the performance of the most popular SAT algorithms on random problems, the theory of average case ..."
Abstract

Cited by 114 (1 self)
 Add to MetaCart
. Finding sets of hard instances of propositional satisfiability is of interest for understanding the complexity of SAT, and for experimentally evaluating SAT algorithms. In discussing this we consider the performance of the most popular SAT algorithms on random problems, the theory of average case complexity, the threshold phenomenon, known lower bounds for certain classes of algorithms, and the problem of generating hard instances with solutions.
Generating Hard Satisfiability Problems
 Artificial Intelligence
, 1996
"... We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible ..."
Abstract

Cited by 98 (2 self)
 Add to MetaCart
We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to generate random formulas that are hard, that is, for which satisfiability testing is quite difficult. Our results provide a benchmark for the evaluation of satisfiabilitytesting procedures. In Artificial Intelligence, 81 (19996) 1729. 1 Introduction Many computational tasks of interest to AI, to the extent that they can be precisely characterized at all, can be shown to be NPhard in their most general form. However, there is fundamental disagreement, at least within the AI community, about the implications of this. It is claimed on the one hand that since the performance of algorithms designed to solve NPhard tasks degrades rapidly with small increases in input size, something ...
Ten challenges in propositional reasoning and search
, 1997
"... The past several years have seen much progress in the area of propositional reasoning and satisfiability testing. There is a growing consensus by researchers on the key technical challenges that need to be addressed in order to maintain this momentum. This paper outlines concrete technical challenge ..."
Abstract

Cited by 83 (3 self)
 Add to MetaCart
The past several years have seen much progress in the area of propositional reasoning and satisfiability testing. There is a growing consensus by researchers on the key technical challenges that need to be addressed in order to maintain this momentum. This paper outlines concrete technical challenges in the core areas of systematic search, stochastic search, problem encodings, and criteria for evaluating progress in this area. 1
A twophase exact algorithm for MAXSAT and weighted MAXSAT problems
 Journal of Combinatorial Optimization
, 1997
"... We describe a two phase algorithm for MAXSAT and weighted MAX SAT problems. In the first phase, we use the GSAT heuristic to find a good solution to the problem. In the second phase, we use an enumeration procedure based on the DavisPutnamLoveland algorithm, to find a provably optimal soluti ..."
Abstract

Cited by 80 (4 self)
 Add to MetaCart
We describe a two phase algorithm for MAXSAT and weighted MAX SAT problems. In the first phase, we use the GSAT heuristic to find a good solution to the problem. In the second phase, we use an enumeration procedure based on the DavisPutnamLoveland algorithm, to find a provably optimal solution. The first heuristic stage improves the performance of the algorithm by obtaining an upper bound on the minimum number of unsatisfied clauses that can be used in pruning branches of the search tree. We compare our algorithm with an integer programming branch and cut algorithm. Our implementation of the two phase algorithm is faster Research partially supported by ONR Grant number N000149410391. y Mathematics Department, New Mexico Tech, Socorro, NM 87801. z Department of Mathematical Sciences, Clemson University, Clemson, SC 29634 than the integer programming approach on many problems. However, the integer programming approach is more effective than the two phase algorithm o...
A Discrete LagrangianBased GlobalSearch Method for Solving Satisfiability Problems
 Journal of Global Optimization
, 1998
"... Satisfiability is a class of NPcomplete problems that model a wide range of realworld applications. These problems are difficult to solve because they have many local minima in their search space, often trapping greedy search methods that utilize some form of descent. In this paper, we propose a n ..."
Abstract

Cited by 60 (7 self)
 Add to MetaCart
Satisfiability is a class of NPcomplete problems that model a wide range of realworld applications. These problems are difficult to solve because they have many local minima in their search space, often trapping greedy search methods that utilize some form of descent. In this paper, we propose a new discrete Lagrangemultiplierbased globalsearch method for solving satisfiability problems. We derive new approaches for applying Lagrangian methods in discrete space, show that equilibrium is reached when a feasible assignment to the original problem is found, and present heuristic algorithms to look for equilibrium points. Instead of restarting from a new starting point when a search reaches a local trap, the Lagrange multipliers in our method provide a force to lead the search out of a local minimum and move it in the direction provided by the Lagrange multipliers. One of the major advantages of our method is that it has very few algorithmic parameters to be tuned by users, and the se...
G.: Logicbased benders decomposition
 Mathematical Programming
, 2003
"... Benders decomposition uses a strategy of “learning from one’s mistakes.” The aim of this paper is to extend this strategy to a much larger class of problems. The key is to generalize the linear programming dual used in the classical method to an “inference dual. ” Solution of the inference dual take ..."
Abstract

Cited by 45 (10 self)
 Add to MetaCart
Benders decomposition uses a strategy of “learning from one’s mistakes.” The aim of this paper is to extend this strategy to a much larger class of problems. The key is to generalize the linear programming dual used in the classical method to an “inference dual. ” Solution of the inference dual takes the form of a logical deduction that yields Benders cuts. The dual is therefore very different from other generalized duals that have been proposed. The approach is illustrated by working out the details for propositional satisfiability and 01 programming problems. Computational tests are carried out for the latter, but the most promising contribution of logicbased Benders may be to provide a framework for combining optimization and constraint programming methods.
Computational experience with an interior point algorithm on the satisfiability problem
 Annals of Operations Research
, 1990
"... We apply the zeroone integer programming algorithm described in Karmarkar [12] and Karmarkar, Resende and Ramakrishnan [13] to solve randomly generated instances of the satisfiability problem (SAT). The interior point algorithm is briefly reviewed and shown to be easily adapted to solve large insta ..."
Abstract

Cited by 43 (4 self)
 Add to MetaCart
We apply the zeroone integer programming algorithm described in Karmarkar [12] and Karmarkar, Resende and Ramakrishnan [13] to solve randomly generated instances of the satisfiability problem (SAT). The interior point algorithm is briefly reviewed and shown to be easily adapted to solve large instances of SAT. Hundreds of instances of SAT (having from 100 to 1000 variables and 100 to 32,000 clauses) are randomly generated and solved. For comparison, we attempt to solve the problems via linear programming relaxation with MINOS.