Results 21  30
of
43
Homomorphisms of higher categories
 U.U.D.M. REPORT 2008:47
, 2008
"... We describe a construction that to each algebraically specified notion of higherdimensional category associates a notion of homomorphism which preserves the categorical structure only up to weakly invertible higher cells. The construction is such that these homomorphisms admit a strictly associativ ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
We describe a construction that to each algebraically specified notion of higherdimensional category associates a notion of homomorphism which preserves the categorical structure only up to weakly invertible higher cells. The construction is such that these homomorphisms admit a strictly associative and unital composition. We give two applications of this construction. The first is to tricategories; and here we do not obtain the trihomomorphisms defined by Gordon, Power and Street, but rather something which is equivalent in a suitable sense. The second application is to Batanin’s weak ωcategories.
A 2categories companion
"... Abstract. This paper is a rather informal guide to some of the basic theory of 2categories and bicategories, including notions of limit and colimit, 2dimensional universal algebra, formal category theory, and nerves of bicategories. 1. Overview and basic examples This paper is a rather informal gu ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. This paper is a rather informal guide to some of the basic theory of 2categories and bicategories, including notions of limit and colimit, 2dimensional universal algebra, formal category theory, and nerves of bicategories. 1. Overview and basic examples This paper is a rather informal guide to some of the basic theory of 2categories and bicategories, including notions of limit and colimit, 2dimensional universal algebra, formal category theory, and nerves of bicategories. As is the way of these things, the choice of topics is somewhat personal. No attempt is made at either rigour or completeness. Nor is it completely introductory: you will not find a definition of bicategory; but then nor will you really need one to read it. In keeping with the philosophy of category theory, the morphisms between bicategories play more of a role than the bicategories themselves. 1.1. The key players. There are bicategories, 2categories, and Catcategories. The latter two are exactly the same (except that strictly speaking a Catcategory should have small homcategories, but that need not concern us here). The first two are nominally different — the 2categories are the strict bicategories, and not every bicategory is strict — but every bicategory is biequivalent to a strict one, and biequivalence is the right general notion of equivalence for bicategories and for 2categories. Nonetheless, the theories of bicategories, 2categories, and Catcategories have rather different flavours.
Categorical Equational Systems: Algebraic Models and Equational Reasoning
, 2010
"... This dissertation is submitted for the degree of Doctor of PhilosophyDedicated to my parents and my wifeDeclaration This dissertation is the result of my own work done under the guidance of my supervisor, and includes nothing which is the outcome of work done in collaboration except where specifical ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
This dissertation is submitted for the degree of Doctor of PhilosophyDedicated to my parents and my wifeDeclaration This dissertation is the result of my own work done under the guidance of my supervisor, and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation is not substantially the same as any that I have submitted or will be submitting for a degree or diploma or other qualification at this or any other University. This dissertation does not exceed the regulation length of 60,000 words, including tables and footnotes. 5
Completeness for algebraic theories of local state
"... Abstract. Every algebraic theory gives rise to a monad, and monads allow a metalanguage which is a basic programming language with sideeffects. Equations in the algebraic theory give rise to equations between programs in the metalanguage. An interesting question is this: to what extent can we put ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
Abstract. Every algebraic theory gives rise to a monad, and monads allow a metalanguage which is a basic programming language with sideeffects. Equations in the algebraic theory give rise to equations between programs in the metalanguage. An interesting question is this: to what extent can we put equational reasoning for programs into the algebraic theory for the monad? In this paper I focus on local state, where programs can allocate, update and read the store. Plotkin and Power (FoSSaCS’02) have proposed an algebraic theory of local state, and they conjectured that the theory is complete, in the sense that every consistent equation is already derivable. The central contribution of this paper is to confirm this conjecture. To establish the completeness theorem, it is necessary to reformulate the informal theory of Plotkin and Power as an enriched algebraic theory in the sense of Kelly and Power (JPAA, 89:163–179). The new presentation can be read as 14 program assertions about three effects. The completeness theorem for local state is dependent on certain conditions on the type of storable values. When the set of storable values is finite, there is a subtle additional axiom regarding quotient types. 1
Data Refinement and Algebraic Structure
, 1996
"... We recall Hoare's formulation of data refinement in terms of upward, downward and total simulations between locally ordered functors from the structured locally ordered category generated by a programming language with an abstract data type to a semantic locally ordered category: we use a simple imp ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
We recall Hoare's formulation of data refinement in terms of upward, downward and total simulations between locally ordered functors from the structured locally ordered category generated by a programming language with an abstract data type to a semantic locally ordered category: we use a simple imperative language with a data type for stacks as leading example. We give a unified category theoretic account of the sort of structures on a category that allow upward simulation to extend from ground types and ground programs to all types and programs of the language. This answers a question of Hoare about the category theory underlying his constructions. It involves a careful study of algebraic structure on the category of small locally ordered categories, and a new definition of sketch of such structure. This is accompanied by a range of detailed examples. We extend that analysis to total simulations for modelling constructors of mixed variance such as higher order types. 1 Introduction ...
Axiomatics for Data Refinement in Call By Value Programming Languages
"... We give a systematic category theoretic axiomatics for modelling data refinement in call by value programming languages. Our leading examples of call by value languages are extensions of the computational calculus, such as FPC and languages for modelling nondeterminism, and extensions of the first ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We give a systematic category theoretic axiomatics for modelling data refinement in call by value programming languages. Our leading examples of call by value languages are extensions of the computational calculus, such as FPC and languages for modelling nondeterminism, and extensions of the first order fragment of the computational calculus, such as a CPS language. We give a category theoretic account of the basic setting, then show how to model contexts, then arbitrary type and term constructors, then signatures, and finally data refinement. This extends and clarifies Kinoshita and Power's work on lax logical relations for call by value languages.
Coherence for categorified operadic theories
"... It has long been known that every weak monoidal category A is equivalent via monoidal functors and monoidal natural transformations to a strict monoidal category st(A). We generalise the definition of weak monoidal category to give a definition of weak Pcategory for any strongly regular (operadic) ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
It has long been known that every weak monoidal category A is equivalent via monoidal functors and monoidal natural transformations to a strict monoidal category st(A). We generalise the definition of weak monoidal category to give a definition of weak Pcategory for any strongly regular (operadic) theory P, and show that every weak Pcategory is equivalent via Pfunctors and Ptransformations to a strict Pcategory. This strictification functor is then shown to have an interesting universal property. 1
Term Equational Systems and Logics (Extended Abstract)
"... We introduce an abstract general notion of system of equations between terms, called Term Equational System, and develop a sound logical deduction system, called Term Equational Logic, for equational reasoning. Further, we give an analysis of algebraic free constructions that together with an intern ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We introduce an abstract general notion of system of equations between terms, called Term Equational System, and develop a sound logical deduction system, called Term Equational Logic, for equational reasoning. Further, we give an analysis of algebraic free constructions that together with an internal completeness result may be used to synthesise complete equational logics. Indeed, as an application, we synthesise a sound and complete nominal equational logic, called Synthetic Nominal Equational Logic, based on the category of Nominal Sets.
Monad Transformers as Monoid Transformers
"... The incremental approach to modular monadic semantics constructs complex monads by using monad transformers to add computational features to a preexisting monad. A complication of this approach is that the operations associated to the preexisting monad need to be lifted to the new monad. In a compa ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The incremental approach to modular monadic semantics constructs complex monads by using monad transformers to add computational features to a preexisting monad. A complication of this approach is that the operations associated to the preexisting monad need to be lifted to the new monad. In a companion paper by Jaskelioff, the lifting problem has been addressed in the setting of system F ω. Here, we recast and extend those results in a categorytheoretic setting. We abstract and generalize from monads to monoids (in a monoidal category), and from monad transformers to monoid transformers. The generalization brings more simplicity and clarity, and opens the way for lifting of operations with applicability beyond monads. Key words: Monad, Monoid, Monoidal Category