Results 11  20
of
56
Compositional Term Rewriting: An Algebraic Proof of Toyama's Theorem
 Rewriting Techniques and Applications, 7th International Conference, number 1103 in Lecture Notes in Computer Science
, 1996
"... This article proposes a compositional semantics for term rewriting systems, i.e. a semantics preserving structuring operations such as the disjoint union. The semantics is based on the categorical construct of a monad, adapting the treatment of universal algebra in category theory to term rewriting ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
This article proposes a compositional semantics for term rewriting systems, i.e. a semantics preserving structuring operations such as the disjoint union. The semantics is based on the categorical construct of a monad, adapting the treatment of universal algebra in category theory to term rewriting systems. As an example, the preservation of confluence under the disjoint union of two term rewriting systems is shown, obtaining an algebraic proof of Toyama's theorem, generalised slightly to term rewriting systems introducing variables on the righthand side of the rules.
ENRICHED MODEL CATEGORIES AND AN APPLICATION TO ADDITIVE ENDOMORPHISM SPECTRA
"... Abstract. We define the notion of an additive model category and prove that ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
Abstract. We define the notion of an additive model category and prove that
Generalized operads and their inner cohomomorphisms, arXiv:math.CT/ 0609748
, 2006
"... Abstract. In this paper we introduce a notion of generalized operad containing as special cases various kinds of operad–like objects: ordinary, cyclic, modular, properads etc. We then construct inner cohomomorphism objects in their categories (and categories of algebras over them). We argue that the ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
Abstract. In this paper we introduce a notion of generalized operad containing as special cases various kinds of operad–like objects: ordinary, cyclic, modular, properads etc. We then construct inner cohomomorphism objects in their categories (and categories of algebras over them). We argue that they provide an approach to symmetry and moduli objects in noncommutative geometries based upon these “ring–like ” structures. We give a unified axiomatic treatment of generalized operads as functors on categories of abstract labeled graphs. Finally, we extend inner cohomomorphism constructions to more general categorical contexts. This version differs from the previous ones by several local changes (including the title) and two extra references. 0.1. Inner cohomomorphisms of associative algebras. Let k be a field. Consider pairs A = (A, A1) consisting of an associative k–algebra A and a finite dimensional subspace A1 generating A. For two such pairs A = (A, A1) and B =
Topological Hochschild homology of Thom spectra which are . . .
, 2008
"... We identify the topological Hochschild homology (THH) of the Thom spectrum associated to an E ∞ classifying map X → BG, for G an appropriate group or monoid (e.g. U, O, and F). We deduce the comparison from the observation of McClure, Schwanzl, and Vogt that THH of a cofibrant commutative Salgebra ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
We identify the topological Hochschild homology (THH) of the Thom spectrum associated to an E ∞ classifying map X → BG, for G an appropriate group or monoid (e.g. U, O, and F). We deduce the comparison from the observation of McClure, Schwanzl, and Vogt that THH of a cofibrant commutative Salgebra (E ∞ ring spectrum) R can be described as an indexed colimit together with a verification that the LewisMay operadic Thom spectrum functor preserves indexed colimits. We prove a splitting result THH(Mf) ≃ Mf ∧BX+ which yields a convenient description of THH(MU). This splitting holds even when the classifying map f: X → BG is only a homotopy commutative A ∞ map, provided that the induced multiplication on Mf extends to an E ∞ ring structure; this permits us to recover Bokstedt’s calculation of THH(HZ).
The Uniformity Principle on Traced Monoidal Categories
 In Proceedings of CTCS’02, volume 69 of ENTCS
, 2003
"... The uniformity principle for traced monoidal categories has been introduced as a natural generalization of the uniformity principle (Plotkin's principle) for fixpoint operators in domain theory. We show that this notion can be used for constructing new traced monoidal categories from known ones. Som ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
The uniformity principle for traced monoidal categories has been introduced as a natural generalization of the uniformity principle (Plotkin's principle) for fixpoint operators in domain theory. We show that this notion can be used for constructing new traced monoidal categories from known ones. Some classical examples like the Scott induction principle are shown to be instances of these constructions. We also characterize some specific cases of our constructions as suitable enriched limits. 1
The category theoretic solution of recursive program schemes
 Proc. First Internat. Conf. on Algebra and Coalgebra in Computer Science (CALCO 2005), Lecture Notes in Computer Science
, 2006
"... Abstract. This paper provides a general account of the notion of recursive program schemes, studying both uninterpreted and interpreted solutions. It can be regarded as the categorytheoretic version of the classical area of algebraic semantics. The overall assumptions needed are small indeed: worki ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
Abstract. This paper provides a general account of the notion of recursive program schemes, studying both uninterpreted and interpreted solutions. It can be regarded as the categorytheoretic version of the classical area of algebraic semantics. The overall assumptions needed are small indeed: working only in categories with “enough final coalgebras ” we show how to formulate, solve, and study recursive program schemes. Our general theory is algebraic and so avoids using ordered, or metric structures. Our work generalizes the previous approaches which do use this extra structure by isolating the key concepts needed to study substitution in infinite trees, including secondorder substitution. As special cases of our interpreted solutions we obtain the usual denotational semantics using complete partial orders, and the one using complete metric spaces. Our theory also encompasses implicitly defined objects which are not usually taken to be related to recursive program schemes. For example, the classical Cantor twothirds set falls out as an interpreted
Homotopy algebras for operads
"... We present a definition of homotopy algebra for an operad, and explore its consequences. The paper should be accessible to topologists, category theorists, and anyone acquainted with operads. After a review of operads and monoidal categories, the definition of homotopy algebra is given. Specifically ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
We present a definition of homotopy algebra for an operad, and explore its consequences. The paper should be accessible to topologists, category theorists, and anyone acquainted with operads. After a review of operads and monoidal categories, the definition of homotopy algebra is given. Specifically, suppose that M is a monoidal category in which it makes sense to talk about algebras for some operad P. Then our definition says what a homotopy Palgebra in M is, provided only that some of the morphisms in M have been marked out as ‘homotopy equivalences’. The bulk of the paper consists of examples of homotopy algebras. We show that any loop space is a homotopy monoid, and, in fact, that any nfold loop space is an nfold homotopy monoid in an appropriate sense. We try to compare weakened algebraic structures such as A∞spaces, A∞algebras and nonstrict monoidal categories to our homotopy algebras, with varying degrees of success. We also prove results on ‘change of base’, e.g. that the classifying space of a homotopy monoidal category is a homotopy topological monoid. Finally, we
On the construction of free algebras for equational systems
 IN: SPECIAL ISSUE FOR AUTOMATA, LANGUAGES AND PROGRAMMING (ICALP 2007). VOLUME 410 OF THEORETICAL COMPUTER SCIENCE
, 2009
"... The purpose of this paper is threefold: to present a general abstract, yet practical, notion of equational system; to investigate and develop the finitary and transfinite construction of free algebras for equational systems; and to illustrate the use of equational systems as needed in modern applica ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
The purpose of this paper is threefold: to present a general abstract, yet practical, notion of equational system; to investigate and develop the finitary and transfinite construction of free algebras for equational systems; and to illustrate the use of equational systems as needed in modern applications.
On the PROP Corresponding to Bialgebras
 Cah. Top. Géom. Diff. Cat
"... la propriété suivante (cf [13]): les objets de A sont les nombres naturels et l’opération monoïdale est l’addition sur les objets. Une algèbre sur A est un foncteur monoïdal strict de A vers la catégorie tensorielle Vect des espaces vectoriels sur un corps commutatif k. On construit le PROP QF(as) e ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
la propriété suivante (cf [13]): les objets de A sont les nombres naturels et l’opération monoïdale est l’addition sur les objets. Une algèbre sur A est un foncteur monoïdal strict de A vers la catégorie tensorielle Vect des espaces vectoriels sur un corps commutatif k. On construit le PROP QF(as) et on montre que les algèbres sur QF(as) sont exactement les bigèbres. 1