Results 1 
5 of
5
Modular Data Structure Verification
 EECS DEPARTMENT, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
, 2007
"... This dissertation describes an approach for automatically verifying data structures, focusing on techniques for automatically proving formulas that arise in such verification. I have implemented this approach with my colleagues in a verification system called Jahob. Jahob verifies properties of Java ..."
Abstract

Cited by 36 (21 self)
 Add to MetaCart
This dissertation describes an approach for automatically verifying data structures, focusing on techniques for automatically proving formulas that arise in such verification. I have implemented this approach with my colleagues in a verification system called Jahob. Jahob verifies properties of Java programs with dynamically allocated data structures. Developers write Jahob specifications in classical higherorder logic (HOL); Jahob reduces the verification problem to deciding the validity of HOL formulas. I present a new method for proving HOL formulas by combining automated reasoning techniques. My method consists of 1) splitting formulas into individual HOL conjuncts, 2) soundly approximating each HOL conjunct with a formula in a more tractable fragment and 3) proving the resulting approximation using a decision procedure or a theorem prover. I present three concrete logics; for each logic I show how to use it to approximate HOL formulas, and how to decide the validity of formulas in this logic. First, I present an approximation of HOL based on a translation to firstorder logic, which enables the use of existing resolutionbased theorem provers. Second, I present an approximation of HOL based on field constraint analysis, a new technique that enables
Combining Shostak Theories
, 2002
"... Ground decision procedures for combinations of theories are used in many systems for automated deduction. There are two basic paradigms for combining decision procedures. The NelsonOppen method combines decision procedures for disjoint theories by exchanging equality information on the shared vari ..."
Abstract

Cited by 25 (2 self)
 Add to MetaCart
Ground decision procedures for combinations of theories are used in many systems for automated deduction. There are two basic paradigms for combining decision procedures. The NelsonOppen method combines decision procedures for disjoint theories by exchanging equality information on the shared variables. In Shostak's method, the combination of the theory of pure equality with canonizable and solvable theories is decided through an extension of congruence closure that yields a canonizer for the combined theory. Shostak's original presentation, and others that followed it, contained serious errors which were corrected for the basic procedure by the present authors. Shostak also claimed that it was possible to combine canonizers and solvers for disjoint theories. This claim is easily verifiable for canonizers, but is unsubstantiated in the case of solvers. We show how our earlier procedure can be extended to combine multiple disjoint canonizable, solvable theories within the Shostak framework.
On Linear Arithmetic with Stars
"... Abstract. We consider an extension of integer linear arithmetic with a star operator that takes closure under vector addition of the set of solutions of linear arithmetic subformula. We show that the satisfiability problem for this language is in NP (and therefore NPcomplete). Our proof uses a gene ..."
Abstract

Cited by 8 (6 self)
 Add to MetaCart
Abstract. We consider an extension of integer linear arithmetic with a star operator that takes closure under vector addition of the set of solutions of linear arithmetic subformula. We show that the satisfiability problem for this language is in NP (and therefore NPcomplete). Our proof uses a generalization of a recent result on sparse solutions of integer linear programming problems. We present two consequences of our result. The first one is an optimal decision procedure for a logic of sets, multisets, and cardinalities that has applications in verification, interactive theorem proving, and description logics. The second is NPcompleteness of the reachability problem for a class of “homogeneous ” transition systems whose transitions are defined using integer linear arithmetic formulas. 1
Providing a Formal Linkage between MDG and HOL
, 2002
"... We describe an approach for formally verifying the linkage between a symbolic state enumeration system and a theorem proving system. This involves the following three stages of proof. Firstly we prove theorems about the correctness of the translation part of the symbolic state system. It interface ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
We describe an approach for formally verifying the linkage between a symbolic state enumeration system and a theorem proving system. This involves the following three stages of proof. Firstly we prove theorems about the correctness of the translation part of the symbolic state system. It interfaces between low level decision diagrams and high level description languages. We ensure that the semantics of a program is preserved in those of its translated form. Secondly we prove linkage theorems: theorems that justify introducing a result from a state enumeration system into a proof system. Finally we combine the translator correctness and linkage theorems. The resulting new linkage theorems convert results to a high level language from the low level decision diagrams that the result was actually proved about in the state enumeration system.They justify importing lowlevel external verification results into a theorem prover. We use a linkage between the HOL system and a simplified version of the MDG system to illustrate the ideas and consider a small example that integrates two applications from MDG and HOL to illustrate the linkage theorems.
Pragmatics of Decision Procedures in Automated Reasoning (PDPAR’04)
"... This volume contains the proceedings of PDPAR’04, the second workshop on ..."