Results 1  10
of
23
Convex Nondifferentiable Optimization: A Survey Focussed On The Analytic Center Cutting Plane Method.
, 1999
"... We present a survey of nondifferentiable optimization problems and methods with special focus on the analytic center cutting plane method. We propose a selfcontained convergence analysis, that uses the formalism of the theory of selfconcordant functions, but for the main results, we give direct pr ..."
Abstract

Cited by 51 (2 self)
 Add to MetaCart
We present a survey of nondifferentiable optimization problems and methods with special focus on the analytic center cutting plane method. We propose a selfcontained convergence analysis, that uses the formalism of the theory of selfconcordant functions, but for the main results, we give direct proofs based on the properties of the logarithmic function. We also provide an in depth analysis of two extensions that are very relevant to practical problems: the case of multiple cuts and the case of deep cuts. We further examine extensions to problems including feasible sets partially described by an explicit barrier function, and to the case of nonlinear cuts. Finally, we review several implementation issues and discuss some applications.
Parallel InteriorPoint Solver for Structured Quadratic Programs: Application to Financial Planning Problems
, 2003
"... Many practical largescale optimization problems are not only sparse, but also display some form of blockstructure such as primal or dual block angular structure. Often these structures are nested: each block of the coarse top level structure is blockstructured itself. Problems with these charact ..."
Abstract

Cited by 41 (20 self)
 Add to MetaCart
Many practical largescale optimization problems are not only sparse, but also display some form of blockstructure such as primal or dual block angular structure. Often these structures are nested: each block of the coarse top level structure is blockstructured itself. Problems with these characteristics appear frequently in stochastic programming but also in other areas such as telecommunication network modelling. We present a linear algebra library tailored for problems with such structure that is used inside an interior point solver for convex quadratic programming problems. Due to its objectoriented design it can be used to exploit virtually any nested block structure arising in practical problems, eliminating the need for highly specialised linear algebra modules needing to be written for every type of problem separately. Through a careful implementation we achieve almost automatic parallelisation of the linear algebra. The efficiency of the approach is illustrated on several problems arising in the financial planning, namely in the asset and liability management. The problems are modelled as
Solving Nonlinear Multicommodity Flow Problems By The Analytic Center Cutting Plane Method
, 1995
"... The paper deals with nonlinear multicommodity flow problems with convex costs. A decomposition method is proposed to solve them. The approach applies a potential reduction algorithm to solve the master problem approximately and a column generation technique to define a sequence of primal linear prog ..."
Abstract

Cited by 29 (14 self)
 Add to MetaCart
The paper deals with nonlinear multicommodity flow problems with convex costs. A decomposition method is proposed to solve them. The approach applies a potential reduction algorithm to solve the master problem approximately and a column generation technique to define a sequence of primal linear programming problems. Each subproblem consists of finding a minimum cost flow between an origin and a destination node in an uncapacited network. It is thus formulated as a shortest path problem and solved with the Dijkstra's dheap algorithm. An implementation is described that that takes full advantage of the supersparsity of the network in the linear algebra operations. Computational results show the efficiency of this approach on wellknown nondifferentiable problems and also large scale randomly generated problems (up to 1000 arcs and 5000 commodities). This research has been supported by the Fonds National de la Recherche Scientifique Suisse, grant #12 \Gamma 34002:92, NSERCCanada and ...
A Bundle Type DualAscent Approach to Linear Multicommodity MinCost Flow Problems
, 1999
"... ... MinCost Flow problem, where the mutual capacity constraints are dualized and the resulting Lagrangean Dual is solved with a dualascent algorithm belonging to the class of Bundle methods. Although decomposition approaches to blockstructured Linear Programs have been reported not to be competit ..."
Abstract

Cited by 25 (14 self)
 Add to MetaCart
... MinCost Flow problem, where the mutual capacity constraints are dualized and the resulting Lagrangean Dual is solved with a dualascent algorithm belonging to the class of Bundle methods. Although decomposition approaches to blockstructured Linear Programs have been reported not to be competitive with generalpurpose software, our extensive computational comparison shows that, when carefully implemented, a decomposition algorithm can outperform several other approaches, especially on problems where the number of commodities is “large” with respect to the size of the graph. Our specialized Bundle algorithm is characterized by a new heuristic for the trust region parameter handling, and embeds a specialized Quadratic Program solver that allows the efficient implementation of strategies for reducing the number of active Lagrangean variables. We also exploit the structural properties of the singlecommodity MinCost Flow subproblems to reduce the overall computational cost. The proposed approach can be easily extended to handle variants of the problem.
A Survey of Algorithms for Convex Multicommodity Flow Problems
, 1997
"... There are many problems related to the design of networks. Among them, the message routing problem plays a determinant role in the optimization of network performance. Much of the motivation for this work comes from this problem which is shown to belong to the class of nonlinear convex multicommodit ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
There are many problems related to the design of networks. Among them, the message routing problem plays a determinant role in the optimization of network performance. Much of the motivation for this work comes from this problem which is shown to belong to the class of nonlinear convex multicommodity flow problems. This paper emphasizes the message routing problem in data networks, but it includes a broader literature overview of convex multicommodity flow problems. We present and discuss the main solution techniques proposed for solving this class of largescale convex optimization problems. We conduct some numerical experiments on the message routing problem with some different techniques. 1 Introduction The literature dealing with multicommodity flow problems is rich since the publication of the works of Ford and Fulkerson's [19] and T.C. Hu [30] in the beginning of the 1960s. These problems usually have a very large number of variables and constraints and arise in a great variety o...
Ergodic, Primal Convergence in Dual Subgradient Schemes for Convex Programming
"... Lagrangean dualization and subgradient optimization techniques are frequently used within the field of computational optimization for finding approximate solutions to large, structured optimization problems. The dual subgradient scheme does not automatically produce primal feasible solutions; there ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
Lagrangean dualization and subgradient optimization techniques are frequently used within the field of computational optimization for finding approximate solutions to large, structured optimization problems. The dual subgradient scheme does not automatically produce primal feasible solutions; there is an abundance of techniques for computing such solutions (via penalty functions, tangential approximation schemes, or the solution of auxiliary primal programs) , all of which require a fair amount of computational effort. We consider a subgradient optimization scheme applied to a Lagrangean dual formulation of a convex program, and construct, at minor cost, an ergodic sequence of subproblem solutions which converges to the primal solution set. Numerical experiments performed on a traffic equilibrium assignment problem under road pricing show that the computation of the ergodic sequence results in a considerable improvement in the quality of the primal solutions obtained, compared to those...
INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION
, 1995
"... Research on using interior point algorithms to solve combinatorial optimization and integer programming problems is surveyed. This paper discusses branch and cut methods for integer programming problems, a potential reduction method based on transforming an integer programming problem to an equivale ..."
Abstract

Cited by 14 (9 self)
 Add to MetaCart
Research on using interior point algorithms to solve combinatorial optimization and integer programming problems is surveyed. This paper discusses branch and cut methods for integer programming problems, a potential reduction method based on transforming an integer programming problem to an equivalent nonconvex quadratic programming problem, interior point methods for solving network flow problems, and methods for solving multicommodity flow problems, including an interior point column generation algorithm.
Using an Interior Point Method for the Master Problem in a Decomposition Approach
 European Journal of Operational Research
, 1997
"... We addres some of the issues that arise when an interior point method is used to handle the master problem in a decomposition approach. The main points concern the efficient exploitation of the special structure of the master problem to reduce the cost of a single interior point iteration. The parti ..."
Abstract

Cited by 11 (7 self)
 Add to MetaCart
We addres some of the issues that arise when an interior point method is used to handle the master problem in a decomposition approach. The main points concern the efficient exploitation of the special structure of the master problem to reduce the cost of a single interior point iteration. The particular structure is the presence of GUB constraints and the natural partitioning of the constraint matrix into blocks built of cuts generated by different subproblems. The method can be used in a fairly general case, i.e., in any decomposition approach whenever the master is solved by an interior point method in which the normal equations are used to compute orthogonal projections. Computational results demonstrate its advantages for one particular decomposition approach: Analytic Center Cutting Plane Method (ACCPM) is applied to solve large scale nonlinear multicommodity network flow problems (up to 5000 arcs and 10000 commodities). Key words. Convex programming, interior point methods, cutt...
Column Generation with a PrimalDual Method
, 1997
"... A simple column generation scheme that employs an interior point method to solve underlying restricted master problems is presented. In contrast with the classical column generation approach where restricted master problems are solved exactly, the method presented in this paper consists in solving i ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
A simple column generation scheme that employs an interior point method to solve underlying restricted master problems is presented. In contrast with the classical column generation approach where restricted master problems are solved exactly, the method presented in this paper consists in solving it to a predetermined optimality tolerance (loose at the beginning and appropriately tightened when the optimum is approached). An infeasible primaldual interior point method which employs the notion of ¯center to control the distance to optimality is used to solve the restricted master problem. Similarly to the analytic center cutting plane method, the present approach takes full advantage of the use of central prices. Furthermore, it offers more freedom in the choice of optimization strategy as it adaptively adjusts the required optimality tolerance in the master to the observed rate of convergence of the column generation process. The proposed method has been implemented and used to solv...
Interior Point Methods for Nondifferentiable Optimization
, 1998
"... We describe the analytic center cutting plane method and its relationship to classical methods of nondifferentiable optimization and column generation. Implementation issues are also discussed, and current applications listed. Keywords Projective Algorithm, Analytic Center, Cutting Plane Method. T ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
We describe the analytic center cutting plane method and its relationship to classical methods of nondifferentiable optimization and column generation. Implementation issues are also discussed, and current applications listed. Keywords Projective Algorithm, Analytic Center, Cutting Plane Method. This work has been completed with support from the Fonds National Suisse de la Recherche Scientifique, grant 1242503.94, from the Natural Sciences and Engineering Research Council of Canada, grant number OPG0004152 and from the FCAR of Quebec. GERAD/Faculty of Management, McGill University, 1001, Sherbrooke West, Montreal, Que., H3A 1G5, Canada. Email: ma56@musica.mcgill.ca. LOGILAB/Management Studies, University of Geneva, 102, Bd CarlVogt, CH1211 Gen`eve 4, Switzerland. Email: jpvial@hec.unige.ch. 1 Introduction Nondifferentiable convex optimization may be deemed an arcane topic in the field of optimization. Truly enough, many a times problems that are formulated as nondiffere...