Results 1  10
of
25
ANCESTRAL GRAPH MARKOV MODELS
, 2002
"... This paper introduces a class of graphical independence models that is closed under marginalization and conditioning but that contains all DAG independence models. This class of graphs, called maximal ancestral graphs, has two attractive features: there is at most one edge between each pair of verti ..."
Abstract

Cited by 76 (18 self)
 Add to MetaCart
This paper introduces a class of graphical independence models that is closed under marginalization and conditioning but that contains all DAG independence models. This class of graphs, called maximal ancestral graphs, has two attractive features: there is at most one edge between each pair of vertices; every missing edge corresponds to an independence relation. These features lead to a simple parameterization of the corresponding set of distributions in the Gaussian case.
An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation
 Proc. of the Eighth Conference on Uncertainty in Artificial Intelligence
, 1992
"... In a previous paper [8] we presented an algorithm for extracting causal influences from independence information, where a causal influence was defined as the existence of a directed arc in all minimal causal models consistent with the data. In this paper we address the question of deciding whether t ..."
Abstract

Cited by 60 (1 self)
 Add to MetaCart
In a previous paper [8] we presented an algorithm for extracting causal influences from independence information, where a causal influence was defined as the existence of a directed arc in all minimal causal models consistent with the data. In this paper we address the question of deciding whether there exists a causal model that explains ALL the observed dependencies and independencies. Formally, given a list M of conditional independence statements, it is required to decide whether there exists a directed acyclic graph D that is perfectly consistent with M, namely, every statement in M, and no other, is reflected via dseparation in D. We present and analyze an effective algorithm that tests for the existence of such a dag, and produces one, if it exists. Key words: Causal modeling, graphoids, conditional independence. 1 1 Introduction Directed acyclic graphs (dags) have been widely used for modeling statistical data. Starting with the pioneering work of Sewal Wright [...
Logical and algorithmic properties of conditional independence and graphical models. The Annals of Statistics 21
, 1993
"... JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JS ..."
Abstract

Cited by 56 (7 self)
 Add to MetaCart
JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Belief Networks Revisited
, 1994
"... this paper, Rumelhart presented compelling evidence that text comprehension must be a distributed process that combines both topdown and bottomup inferences. Strangely, this dual mode of inference, so characteristic of Bayesian analysis, did not match the capabilities of either the "certainty fact ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
this paper, Rumelhart presented compelling evidence that text comprehension must be a distributed process that combines both topdown and bottomup inferences. Strangely, this dual mode of inference, so characteristic of Bayesian analysis, did not match the capabilities of either the "certainty factors" calculus or the inference networks of PROSPECTOR  the two major contenders for uncertainty management in the 1970s. I thus began to explore the possibility of achieving distributed computation in a "pure" Bayesian framework, so as not to compromise its basic capacity to combine bidirectional inferences (i.e., predictive and abductive) . Not caring much about generality at that point, I picked the simplest structure I could think of (i.e., a tree) and tried to see if anything useful can be computed by assigning each variable a simple processor, forced to communicate only with its neighbors. This gave rise to the treepropagation algorithm reported in [15] and, a year later, the KimPearl algorithm [12], which supported not only bidirectional inferences but also intercausal interactions, such as "explainingaway." These two algorithms were described in Section 2 of Fusion.
From association to causation via regression
 Indiana: University of Notre Dame
, 1997
"... For nearly a century, investigators in the social sciences have used regression models to deduce causeandeffect relationships from patterns of association. Path models and automated search procedures are more recent developments. In my view, this enterprise has not been successful. The models tend ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
For nearly a century, investigators in the social sciences have used regression models to deduce causeandeffect relationships from patterns of association. Path models and automated search procedures are more recent developments. In my view, this enterprise has not been successful. The models tend to neglect the difficulties in establishing causal relations, and the mathematical complexities tend to obscure rather than clarify the assumptions on which the analysis is based. Formal statistical inference is, by its nature, conditional. If maintained hypotheses A, B, C,... hold, then H can be tested against the data. However, if A, B, C,... remain in doubt, so must inferences about H. Careful scrutiny of maintained hypotheses should therefore be a critical part of empirical work a principle honored more often in the breach than the observance.
Aspects Of Graphical Models Connected With Causality
, 1993
"... This paper demonstrates the use of graphs as a mathematical tool for expressing independenices, and as a formal language for communicating and processing causal information in statistical analysis. We show how complex information about external interventions can be organized and represented graphica ..."
Abstract

Cited by 13 (10 self)
 Add to MetaCart
This paper demonstrates the use of graphs as a mathematical tool for expressing independenices, and as a formal language for communicating and processing causal information in statistical analysis. We show how complex information about external interventions can be organized and represented graphically and, conversely, how the graphical representation can be used to facilitate quantitative predictions of the effects of interventions. We first review the Markovian account of causation and show that directed acyclic graphs (DAGs) offer an economical scheme for representing conditional independence assumptions and for deducing and displaying all the logical consequences of such assumptions. We then introduce the manipulative account of causation and show that any DAG defines a simple transformation which tells us how the probability distribution will change as a result of external interventions in the system. Using this transformation it is possible to quantify, from nonexperimental data...
The TETRAD Project: Constraint Based Aids to Causal Model Specification
 MULTIVARIATE BEHAVIORAL RESEARCH
"... ..."