Results 1  10
of
17
Directed planar reachability is in unambiguous logspace
 In Proceedings of IEEE Conference on Computational Complexity CCC
, 2007
"... We show that the stconnectivity problem for directed planar graphs can be decided in unambiguous logarithmic space. 1. ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
We show that the stconnectivity problem for directed planar graphs can be decided in unambiguous logarithmic space. 1.
The Planar kmeans Problem is NPhard
, 2009
"... In the kmeans problem, we are given a finite set S of points in ℜ m, and integer k ≥ 1, and we want to find k points (centers) so as to minimize the sum of the square of the Euclidean distance of each point in S to its nearest center. We show that this wellknown problem is NPhard even for instanc ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
In the kmeans problem, we are given a finite set S of points in ℜ m, and integer k ≥ 1, and we want to find k points (centers) so as to minimize the sum of the square of the Euclidean distance of each point in S to its nearest center. We show that this wellknown problem is NPhard even for instances in the plane, answering an open question posed by Dasgupta [7].
Evaluating monotone circuits on cylinders, planes, and torii
 In Proc. 23rd Symposium on Theoretical Aspects of Computing (STACS), Lecture Notes in Computer Science
, 2006
"... Abstract. We revisit monotone planar circuits MPCVP, with special attention to circuits with cylindrical embeddings. MPCVP is known to be in NC 3 in general, and in LogDCFL for the special case of upward stratified circuits. We characterize cylindricality, which is stronger than planarity but strict ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
Abstract. We revisit monotone planar circuits MPCVP, with special attention to circuits with cylindrical embeddings. MPCVP is known to be in NC 3 in general, and in LogDCFL for the special case of upward stratified circuits. We characterize cylindricality, which is stronger than planarity but strictly generalizes upward planarity, and make the characterization partially constructive. We use this construction, and four key reduction lemmas, to obtain several improvements. We show that monotone circuits with embeddings that are stratified cylindrical, cylindrical, planar oneinputface and focused can be evaluated in LogDCFL, AC 1 (LogDCFL), LogCFL and AC 1 (LogDCFL) respectively. We note that the NC 3 algorithm for general MPCVP is in AC 1 (LogCFL) =SAC 2.Finally, we show that monotone circuits with toroidal embeddings can, given such an embedding, be evaluated in NC. 1
THE ISOMORPHISM PROBLEM FOR PLANAR 3CONNECTED GRAPHS IS IN UNAMBIGUOUS LOGSPACE
, 2008
"... The isomorphism problem for planar graphs is known to be efficiently solvable. For planar 3connected graphs, the isomorphism problem can be solved by efficient parallel algorithms, it is in the class AC¹. In this paper we improve the upper bound for planar 3connected graphs to unambiguous logspace ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
The isomorphism problem for planar graphs is known to be efficiently solvable. For planar 3connected graphs, the isomorphism problem can be solved by efficient parallel algorithms, it is in the class AC¹. In this paper we improve the upper bound for planar 3connected graphs to unambiguous logspace, in fact to UL ∩ coUL. As a consequence of our method we get that the isomorphism problem for oriented graphs is in NL. We also show that the problems are hard for L.
Planar and grid graph reachability problems
 THEOR. COMP. SYS
, 2009
"... We study the complexity of restricted versions of stconnectivity, which is the standard complete problem for NL. In particular, we focus on different classes of planar graphs, of which grid graphs are an important special case. Our main results are: • Reachability in graphs of genus one is logspac ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
We study the complexity of restricted versions of stconnectivity, which is the standard complete problem for NL. In particular, we focus on different classes of planar graphs, of which grid graphs are an important special case. Our main results are: • Reachability in graphs of genus one is logspaceequivalent to reachability in grid graphs (and in particular it is logspaceequivalent to both reachability and nonreachability in planar graphs). • Many of the natural restrictions on gridgraph reachability (GGR) are equivalent under AC 0 reductions (for instance, undirected GGR, outdegreeone GGR, and indegreeoneoutdegreeone GGR are all equivalent). These problems are all equivalent to the problem of determining whether a completed game position in HEX is a winning position, as well as to the problem of reachability in mazes studied by Blum and Kozen [BK78]. These problems provide natural examples of problems that are hard for NC 1 under AC 0 reductions but are not known to be hard for L; they thus give insight into the structure of L. • Reachability in layered planar graphs is logspaceequivalent to layered grid graph reachability (LGGR). We show that LGGR lies in UL (a subclass of NL). • SeriesParallel digraphs (on which reachability was shown to be decidable in logspace by Jakoby et al.) are a special case of singlesourcesinglesink planar directed acyclic graphs (DAGs); reachability for such graphs logspace reduces to singlesourcesinglesink acyclic grid graphs. We show that reachability on such grid graphs AC 0 reduces to undirected GGR. • We build on this to show that reachability for singlesource multiplesink planar DAGs is solvable in L.
Planar graph isomorphism is in logspace
 In IEEE Conference on Computational Complexity
, 2009
"... Abstract. We show that the isomorphism of 3connected planar graphs can be decided in deterministic logspace. This improves the previously known bound UL ∩ coUL of [13]. 1 ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
Abstract. We show that the isomorphism of 3connected planar graphs can be decided in deterministic logspace. This improves the previously known bound UL ∩ coUL of [13]. 1
Connectivity check in 3connected planar graphs with obstacles
"... We define a vertex labelling for every planar 3connected graph with n vertices from which one can answer connectivity queries. A connectivity query asks whether there exists in the given graph a path linking u and v that avoids a set F of edges and a set X of vertices. The vertices u,v and those of ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
We define a vertex labelling for every planar 3connected graph with n vertices from which one can answer connectivity queries. A connectivity query asks whether there exists in the given graph a path linking u and v that avoids a set F of edges and a set X of vertices. The vertices u,v and those of X are given by their labels. The edges of F are given by the labels of their ends. Each label has a size of O(log(n)) bits. Our construction makes an essential use of straightline embeddings on n × n grids of simple loopfree planar graphs. Such embeddings can be constructed in linear time by Schnyder’s algorithm [7].
Reachability Problems: An Update
"... Abstract. There has been a great deal of progress in the fifteen years that have elapsed since Wigderson published his survey on the complexity of the graph connectivity problem [Wig92]. Most significantly, Reingold solved the longstanding question of the complexity of the st connectivity problem i ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. There has been a great deal of progress in the fifteen years that have elapsed since Wigderson published his survey on the complexity of the graph connectivity problem [Wig92]. Most significantly, Reingold solved the longstanding question of the complexity of the st connectivity problem in undirected graphs, showing that this is complete for logspace (L) [Rei05]. This survey talk will focus on some of the remaining open questions dealing with graph reachability problems. Particular attention will be paid to these topics: – Reachability in planar directed graphs (and more generally, in graphs of low genus) [ADR05,BTV07]. – Reachability in different classes of grid graphs [ABC + 06]. – Reachability in mangroves [AL98]. The problem of finding a path from one vertex to another in a graph is the first problem that was identified as being complete for a natural subclass of P; it was shown to be complete for nondeterministic logspace (NL) by Jones [Jon75]. Restricted versions of this problem were subsequently shown to be complete for other natural complexity
The Complexity of Planar Graph Isomorphism
"... The Graph Isomorphism problem restricted to planar graphs has been known to be solvable in polynomial time many years ago. In terms of complexity classes however, the exact complexity of the problem has been established only very recently. It was proved in [6] that planar graph isomorphism can be co ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The Graph Isomorphism problem restricted to planar graphs has been known to be solvable in polynomial time many years ago. In terms of complexity classes however, the exact complexity of the problem has been established only very recently. It was proved in [6] that planar graph isomorphism can be computed within logarithmic space. Since there is a matching hardness result [12], this shows that the problem is complete for L. Although this could be considered as a result in algorithmics its proof relies on several important new developments in the area of logarithmic space complexity classes and reflects the close connections between algorithms and complexity theory. In this column we give an overview of this result mentioning the developments that led to it. 1
unknown title
"... My research interest lies in theoretical computer science with a primary focus on complexity theory and computational geometry. In complexity theory, we identify different classes of problems according to the amount of computational resources they require and study how those classes are related. The ..."
Abstract
 Add to MetaCart
My research interest lies in theoretical computer science with a primary focus on complexity theory and computational geometry. In complexity theory, we identify different classes of problems according to the amount of computational resources they require and study how those classes are related. The goal is to eventually get closer to answers to questions such as: