Results 1  10
of
542
Discrete DifferentialGeometry Operators for Triangulated 2Manifolds
, 2002
"... This paper provides a unified and consistent set of flexible tools to approximate important geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We present a consistent derivation of these first and second order differential properties using averaging Vorono ..."
Abstract

Cited by 449 (14 self)
 Add to MetaCart
This paper provides a unified and consistent set of flexible tools to approximate important geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We present a consistent derivation of these first and second order differential properties using averaging Voronoi cells and the mixed FiniteElement/FiniteVolume method, and compare them to existing formulations. Building upon previous work in discrete geometry, these new operators are closely related to the continuous case, guaranteeing an appropriate extension from the continuous to the discrete setting: they respect most intrinsic properties of the continuous differential operators.
Linear Algebra Operators for GPU Implementation of Numerical Algorithms
 ACM Transactions on Graphics
, 2003
"... In this work, the emphasis is on the development of strategies to realize techniques of numerical computing on the graphics chip. In particular, the focus is on the acceleration of techniques for solving sets of algebraic equations as they occur in numerical simulation. We introduce a framework for ..."
Abstract

Cited by 324 (9 self)
 Add to MetaCart
In this work, the emphasis is on the development of strategies to realize techniques of numerical computing on the graphics chip. In particular, the focus is on the acceleration of techniques for solving sets of algebraic equations as they occur in numerical simulation. We introduce a framework for the implementation of linear algebra operators on programmable graphics processors (GPUs), thus providing the building blocks for the design of more complex numerical algorithms. In particular, we propose a stream model for arithmetic operations on vectors and matrices that exploits the intrinsic parallelism and efficient communication on modern GPUs. Besides performance gains due to improved numerical computations, graphics algorithms benefit from this model in that the transfer of computation results to the graphics processor for display is avoided. We demonstrate the effectiveness of our approach by implementing direct solvers for sparse matrices, and by applying these solvers to multidimensional finite difference equations, i.e. the 2D wave equation and the incompressible NavierStokes equations.
Point Set Surfaces
, 2001
"... We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the method of moving least squares (MLS). We pre ..."
Abstract

Cited by 299 (41 self)
 Add to MetaCart
We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the method of moving least squares (MLS). We present tools to increase or decrease the density of the points, thus, allowing an adjustment of the spacing among the points to control the fidelity of the representation. To display the point set surface, we introduce a novel point rendering technique. The idea is to evaluate the local maps according to the image resolution. This results in high quality shading effects and smooth silhouettes at interactive frame rates.
Sparse matrix solvers on the GPU: conjugate gradients and multigrid
 ACM Trans. Graph
, 2003
"... Permission to make digital/hard copy of part of all of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given ..."
Abstract

Cited by 297 (3 self)
 Add to MetaCart
Permission to make digital/hard copy of part of all of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission
Multiresolution signal processing for meshes
"... We generalize basic signal processing tools such as downsampling, upsampling, and filters to irregular connectivity triangle meshes. This is accomplished through the design of a nonuniform relaxation procedure whose weights depend on the geometry and we show its superiority over existing schemes wh ..."
Abstract

Cited by 245 (11 self)
 Add to MetaCart
We generalize basic signal processing tools such as downsampling, upsampling, and filters to irregular connectivity triangle meshes. This is accomplished through the design of a nonuniform relaxation procedure whose weights depend on the geometry and we show its superiority over existing schemes whose weights depend only on connectivity. This is combined with known mesh simplification methods to build subdivision and pyramid algorithms. We demonstrate the power of these algorithms through a number of application examples including smoothing, enhancement, editing, and texture mapping.
Progressive Geometry Compression
, 2000
"... We propose a new progressive compression scheme for arbitrary topology, highly detailed and densely sampled meshes arising from geometry scanning. We observe that meshes consist of three distinct components: geometry, parameter, and connectivity information. The latter two do not contribute to the r ..."
Abstract

Cited by 239 (13 self)
 Add to MetaCart
We propose a new progressive compression scheme for arbitrary topology, highly detailed and densely sampled meshes arising from geometry scanning. We observe that meshes consist of three distinct components: geometry, parameter, and connectivity information. The latter two do not contribute to the reduction of error in a compression setting. Using semiregular meshes, parameter and connectivity information can be virtually eliminated. Coupled with semiregular wavelet transforms, zerotree coding, and subdivision based reconstruction we see improvements in error by a factor four (12dB) compared to other progressive coding schemes. CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling  hierarchy and geometric transformations; G.1.2 [Numerical Analysis]: Approximation  approximation of surfaces and contours, wavelets and fractals; I.4.2 [Image Processing and Computer Vision]: Compression (Coding)  Approximate methods Additional K...
Laplacian Surface Editing
, 2004
"... Surface editing operations commonly require geometric details of the surface to be preserved as much as possible. We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best performed by operating over an intrinsic surface representation. We p ..."
Abstract

Cited by 235 (27 self)
 Add to MetaCart
Surface editing operations commonly require geometric details of the surface to be preserved as much as possible. We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best performed by operating over an intrinsic surface representation. We provide such a representation of a surface, based on the Laplacian of the mesh, by encoding each vertex relative to its neighborhood. The Laplacian of the mesh is enhanced to be invariant to locally linearized rigid transformations and scaling. Based on this Laplacian representation, we develop useful editing operations: interactive freeform deformation in a region of interest based on the transformation of a handle, transfer and mixing of geometric details between two surfaces, and transplanting of a partial surface mesh onto another surface. The main computation involved in all operations is the solution of a sparse linear system, which can be done at interactive rates. We demonstrate the effectiveness of our approach in several examples, showing that the editing operations change the shape while respecting the structural geometric detail.
Spectral Compression of Mesh Geometry
, 2000
"... We show how spectral methods may be applied to 3D mesh data to obtain compact representations. This is achieved by projecting the mesh geometry onto an orthonormal basis derived from the mesh topology. To reduce complexity, the mesh is partitioned into a number of balanced submeshes with minimal int ..."
Abstract

Cited by 234 (6 self)
 Add to MetaCart
We show how spectral methods may be applied to 3D mesh data to obtain compact representations. This is achieved by projecting the mesh geometry onto an orthonormal basis derived from the mesh topology. To reduce complexity, the mesh is partitioned into a number of balanced submeshes with minimal interaction, each of which are compressed independently. Our methods may be used for compression and progressive transmission of 3D content, and are shown to be vastly superior to existing methods using spatial techniques, if slight loss can be tolerated.
Computing and rendering point set surfaces.
 IEEE Transactions on Visualization and Computer Graphics,
, 2003
"... ..."
(Show Context)
Texture Synthesis on Surfaces
 ACM SIGGRAOH 2001
, 2001
"... Many natural and manmade surface patterns are created by interactions between texture elements and surface geometry. We believe that the best way to create such patterns is to synthesize a texture directly on the surface of the model. Given a texture sample in the form of an image, we create a simi ..."
Abstract

Cited by 186 (5 self)
 Add to MetaCart
Many natural and manmade surface patterns are created by interactions between texture elements and surface geometry. We believe that the best way to create such patterns is to synthesize a texture directly on the surface of the model. Given a texture sample in the form of an image, we create a similar texture over an irregular mesh hierarchy that has been placed on a given surface. Our method draws upon texture synthesis methods that use image pyramids, and we use a mesh hierarchy to serve in place of such pyramids. First, we create a hierarchy of points from low to high density over a given surface, and we connect these points to form a hierarchy of meshes. Next, the user specifies a vector field over the surface that indicates the orientation of the texture. The mesh vertices on the surface are then sorted in such a way that visiting the points in order will follow the vector field and will sweep across the surface from one end to the other. Each point is then visited in turn to determine its color. The color of a particular point is found by examining the color of neighboring points and finding the best match to a similar pixel neighborhood in the given texture sample. The color assignment is done in a coarsetofine manner using the mesh hierarchy. A texture created this way fits the surface naturally and seamlessly.