Results 1 
6 of
6
Complete Axioms for Categorical Fixedpoint Operators
 In Proceedings of 15th Annual Symposium on Logic in Computer Science
, 2000
"... We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the fre ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the free iteration theory. We then show how iteration operators arise in axiomatic domain theory. One result derives them from the existence of sufficiently many bifree algebras (exploiting the universal property Freyd introduced in his notion of algebraic compactness) . Another result shows that, in the presence of a parameterized natural numbers object and an equational lifting monad, any uniform fixedpoint operator is necessarily an iteration operator. 1. Introduction Fixed points play a central role in domain theory. Traditionally, one works with a category such as Cppo, the category of !continuous functions between !complete pointed partial orders. This possesses a leastfixedpoint oper...
A Convenient Category of Domains
 GDP FESTSCHRIFT ENTCS, TO APPEAR
"... We motivate and define a category of topological domains, whose objects are certain topological spaces, generalising the usual ωcontinuous dcppos of domain theory. Our category supports all the standard constructions of domain theory, including the solution of recursive domain equations. It also su ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
We motivate and define a category of topological domains, whose objects are certain topological spaces, generalising the usual ωcontinuous dcppos of domain theory. Our category supports all the standard constructions of domain theory, including the solution of recursive domain equations. It also supports the construction of free algebras for (in)equational theories, can be used as the basis for a theory of computability, and provides a model of parametric polymorphism.
Using synthetic domain theory to prove operational properties of a polymorphic programming language based on strictness
 Manuscript
"... We present a simple and workable axiomatization of domain theory within intuitionistic set theory, in which predomains are (special) sets, and domains are algebras for a simple equational theory. We use the axioms to construct a relationally parametric settheoretic model for a compact but powerful ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
We present a simple and workable axiomatization of domain theory within intuitionistic set theory, in which predomains are (special) sets, and domains are algebras for a simple equational theory. We use the axioms to construct a relationally parametric settheoretic model for a compact but powerful polymorphic programming language, given by a novel extension of intuitionistic linear type theory based on strictness. By applying the model, we establish the fundamental operational properties of the language. 1.
Computational Adequacy in an Elementary Topos
 Proceedings CSL ’98, Springer LNCS 1584
, 1999
"... . We place simple axioms on an elementary topos which suffice for it to provide a denotational model of callbyvalue PCF with sum and product types. The model is synthetic in the sense that types are interpreted by their settheoretic counterparts within the topos. The main result characterises whe ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
. We place simple axioms on an elementary topos which suffice for it to provide a denotational model of callbyvalue PCF with sum and product types. The model is synthetic in the sense that types are interpreted by their settheoretic counterparts within the topos. The main result characterises when the model is computationally adequate with respect to the operational semantics of the programming language. We prove that computational adequacy holds if and only if the topos is 1consistent (i.e. its internal logic validates only true \Sigma 0 1 sentences). 1 Introduction One axiomatic approach to domain theory is based on axiomatizing properties of the category of predomains (in which objects need not have a "least" element). Typically, such a category is assumed to be bicartesian closed (although it is not really necessary to require all exponentials) with natural numbers object, allowing the denotations of simple datatypes to be determined by universal properties. It is well known...
Computational Adequacy for Recursive Types in Models of Intuitionistic Set Theory
 In Proc. 17th IEEE Symposium on Logic in Computer Science
, 2003
"... This paper provides a unifying axiomatic account of the interpretation of recursive types that incorporates both domaintheoretic and realizability models as concrete instances. Our approach is to view such models as full subcategories of categorical models of intuitionistic set theory. It is shown ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
This paper provides a unifying axiomatic account of the interpretation of recursive types that incorporates both domaintheoretic and realizability models as concrete instances. Our approach is to view such models as full subcategories of categorical models of intuitionistic set theory. It is shown that the existence of solutions to recursive domain equations depends upon the strength of the set theory. We observe that the internal set theory of an elementary topos is not strong enough to guarantee their existence. In contrast, as our first main result, we establish that solutions to recursive domain equations do exist when the category of sets is a model of full intuitionistic ZermeloFraenkel set theory. We then apply this result to obtain a denotational interpretation of FPC, a recursively typed lambdacalculus with callbyvalue operational semantics. By exploiting the intuitionistic logic of the ambient model of intuitionistic set theory, we analyse the relationship between operational and denotational semantics. We first prove an “internal ” computational adequacy theorem: the model always believes that the operational and denotational notions of termination agree. This allows us to identify, as our second main result, a necessary and sufficient condition for genuine “external ” computational adequacy to hold, i.e. for the operational and denotational notions of termination to coincide in the real world. The condition is formulated as a simple property of the internal logic, related to the logical notion of 1consistency. We provide useful sufficient conditions for establishing that the logical property holds in practice. Finally, we outline how the methods of the paper may be applied to concrete models of FPC. In doing so, we obtain computational adequacy results for an extensive range of realizability and domaintheoretic models.
Axioms and (Counter)examples in Synthetic Domain Theory
 Annals of Pure and Applied Logic
, 1998
"... this paper we adopt the most popular choice, the internal logic of an elementary topos (with nno), also chosen, e.g., in [23, 8, 26]. The principal benefits are that models of the logic (toposes) are ubiquitous, and the methods for constructing and analysing them are very wellestablished. For the p ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
this paper we adopt the most popular choice, the internal logic of an elementary topos (with nno), also chosen, e.g., in [23, 8, 26]. The principal benefits are that models of the logic (toposes) are ubiquitous, and the methods for constructing and analysing them are very wellestablished. For the purposes of the axiomatic part of this paper, we believe that it would also be