Results 1  10
of
49
Numerical solution of saddle point problems
 ACTA NUMERICA
, 2005
"... Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has b ..."
Abstract

Cited by 180 (30 self)
 Add to MetaCart
Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for solving this type of systems. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems.
LOQO: An interior point code for quadratic programming
, 1994
"... ABSTRACT. This paper describes a software package, called LOQO, which implements a primaldual interiorpoint method for general nonlinear programming. We focus in this paper mainly on the algorithm as it applies to linear and quadratic programming with only brief mention of the extensions to convex ..."
Abstract

Cited by 156 (9 self)
 Add to MetaCart
ABSTRACT. This paper describes a software package, called LOQO, which implements a primaldual interiorpoint method for general nonlinear programming. We focus in this paper mainly on the algorithm as it applies to linear and quadratic programming with only brief mention of the extensions to convex and general nonlinear programming, since a detailed paper describing these extensions were published recently elsewhere. In particular, we emphasize the importance of establishing and maintaining symmetric quasidefiniteness of the reduced KKT system. We show that the industry standard MPS format can be nicely formulated in such a way to provide quasidefiniteness. Computational results are included for a variety of linear and quadratic programming problems. 1.
Iterative Solution of Linear Systems
 Acta Numerica
, 1992
"... this paper is as follows. In Section 2, we present some background material on general Krylov subspace methods, of which CGtype algorithms are a special case. We recall the outstanding properties of CG and discuss the issue of optimal extensions of CG to nonHermitian matrices. We also review GMRES ..."
Abstract

Cited by 100 (8 self)
 Add to MetaCart
this paper is as follows. In Section 2, we present some background material on general Krylov subspace methods, of which CGtype algorithms are a special case. We recall the outstanding properties of CG and discuss the issue of optimal extensions of CG to nonHermitian matrices. We also review GMRES and related methods, as well as CGlike algorithms for the special case of Hermitian indefinite linear systems. Finally, we briefly discuss the basic idea of preconditioning. In Section 3, we turn to Lanczosbased iterative methods for general nonHermitian linear systems. First, we consider the nonsymmetric Lanczos process, with particular emphasis on the possible breakdowns and potential instabilities in the classical algorithm. Then we describe recent advances in understanding these problems and overcoming them by using lookahead techniques. Moreover, we describe the quasiminimal residual algorithm (QMR) proposed by Freund and Nachtigal (1990), which uses the lookahead Lanczos process to obtain quasioptimal approximate solutions. Next, a survey of transposefree Lanczosbased methods is given. We conclude this section with comments on other related work and some historical remarks. In Section 4, we elaborate on CGNR and CGNE and we point out situations where these approaches are optimal. The general class of Krylov subspace methods also contains parameterdependent algorithms that, unlike CGtype schemes, require explicit information on the spectrum of the coefficient matrix. In Section 5, we discuss recent insights in obtaining appropriate spectral information for parameterdependent Krylov subspace methods. After that, 4 R.W. Freund, G.H. Golub and N.M. Nachtigal
Interior Methods for Constrained Optimization
 Acta Numerica
, 1992
"... Interior methods for optimization were widely used in the 1960s, primarily in the form of barrier methods. However, they were not seriously applied to linear programming because of the dominance of the simplex method. Barrier methods fell from favour during the 1970s for a variety of reasons, includ ..."
Abstract

Cited by 83 (3 self)
 Add to MetaCart
Interior methods for optimization were widely used in the 1960s, primarily in the form of barrier methods. However, they were not seriously applied to linear programming because of the dominance of the simplex method. Barrier methods fell from favour during the 1970s for a variety of reasons, including their apparent inefficiency compared with the best available alternatives. In 1984, Karmarkar's announcement of a fast polynomialtime interior method for linear programming caused tremendous excitement in the field of optimization. A formal connection can be shown between his method and classical barrier methods, which have consequently undergone a renaissance in interest and popularity. Most papers published since 1984 have concentrated on issues of computational complexity in interior methods for linear programming. During the same period, implementations of interior methods have displayed great efficiency in solving many large linear programs of everincreasing size. Interior methods...
Symmetric quasidefinite matrices
 SIAM Journal on Optimization
, 1995
"... We say that a symmetric matrix K is quasidefinite if it has the form ..."
Abstract

Cited by 54 (3 self)
 Add to MetaCart
We say that a symmetric matrix K is quasidefinite if it has the form
Preconditioning indefinite systems in interior point methods for optimization
 Computational Optimization and Applications
, 2004
"... Abstract. Every Newton step in an interiorpoint method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today’s codes apply direct solution methods to perform this task. The use of logarithmic barriers in interior point methods causes unavoidable il ..."
Abstract

Cited by 44 (13 self)
 Add to MetaCart
Abstract. Every Newton step in an interiorpoint method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today’s codes apply direct solution methods to perform this task. The use of logarithmic barriers in interior point methods causes unavoidable illconditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Two types of preconditioners which use some form of incomplete Cholesky factorization for indefinite systems are proposed in this paper. Although they involve significantly sparser factorizations than those used in direct approaches they still capture most of the numerical properties of the preconditioned system. The spectral analysis of the preconditioned matrix is performed: for convex optimization problems all the eigenvalues of this matrix are strictly positive. Numerical results are given for a set of public domain large linearly constrained convex quadratic programming problems with sizes reaching tens of thousands of variables. The analysis of these results reveals that the solution times for such problems on a modern PC are measured in minutes when direct methods are used and drop to seconds when iterative methods with appropriate preconditioners are used. Keywords: interiorpoint methods, iterative solvers, preconditioners 1.
A QMRbased interiorpoint algorithm for solving linear programs
 Math. Programming
, 1994
"... A new approach for the implementation of interiorpoint methods for solving linear programs is proposed. Its main feature is the iterative solution of the symmetric, but highly indefinite 2\Theta2block systems of linear equations that arise within the interiorpoint algorithm. These linear systems ..."
Abstract

Cited by 39 (4 self)
 Add to MetaCart
A new approach for the implementation of interiorpoint methods for solving linear programs is proposed. Its main feature is the iterative solution of the symmetric, but highly indefinite 2\Theta2block systems of linear equations that arise within the interiorpoint algorithm. These linear systems are solved by a symmetric variant of the quasiminimal residual (QMR) algorithm, which is an iterative solver for general linear systems. The symmetric QMR algorithm can be combined with indefinite preconditioners, which is crucial for the efficient solution of highly indefinite linear systems, yet it still fully exploits the symmetry of the linear systems to be solved. To support the use of the symmetric QMR iteration, a novel stable reduction of the original unsymmetric 3 \Theta 3block systems to symmetric 2 \Theta 2block systems is introduced, and a measure for a low relative accuracy for the solution of these linear systems within the interiorpoint algorithm is proposed. Some indefini...
A New KrylovSubspace Method For Symmetric Indefinite Linear Systems
, 1994
"... Many important applications involve the solution of large linear systems with symmetric, but indefinite coefficient matrices. For example, such systems arise in incompressible flow computations and as subproblems in optimization algorithms for linear and nonlinear programs. Existing Krylovsubspace ..."
Abstract

Cited by 35 (0 self)
 Add to MetaCart
Many important applications involve the solution of large linear systems with symmetric, but indefinite coefficient matrices. For example, such systems arise in incompressible flow computations and as subproblems in optimization algorithms for linear and nonlinear programs. Existing Krylovsubspace iterations for symmetric indefinite systems, such as SYMMLQ and MINRES, require the use of symmetric positive definite preconditioners, which is a rather unnatural restriction when the matrix itself is highly indefinite with both many positive and many negative eigenvalues. In this note, we describe a new Krylovsubspace iteration for solving symmetric indefinite linear systems that can be combined with arbitrary symmetric preconditioners. The algorithm can be interpreted as a special case of the quasiminimal residual method for general nonHermitian linear systems, and like the latter, it produces iterates defined by a quasiminimal residual property. The proposed method has the same work ...