Results 1  10
of
188
Efficient algorithms for geometric optimization
 ACM Comput. Surv
, 1998
"... We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear progra ..."
Abstract

Cited by 117 (12 self)
 Add to MetaCart
We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear programming and related problems, and LPtype problems and their efficient solution. We then describe a variety of applications of these and other techniques to numerous problems in geometric optimization, including facility location, proximity problems, statistical estimators and metrology, placement and intersection of polygons and polyhedra, and ray shooting and other querytype problems.
Las Vegas algorithms for linear and integer programming when the dimension is small
 J. ACM
, 1995
"... Abstract. This paper gives an algcmthm for solving linear programming problems. For a problem with tz constraints and d variables, the algorithm requires an expected O(d’n) + (log n)o(d)d’’+(’(’) + o(dJA log n) arithmetic operations, as rz ~ ~. The constant factors do not depend on d. Also, an algor ..."
Abstract

Cited by 111 (3 self)
 Add to MetaCart
(Show Context)
Abstract. This paper gives an algcmthm for solving linear programming problems. For a problem with tz constraints and d variables, the algorithm requires an expected O(d’n) + (log n)o(d)d’’+(’(’) + o(dJA log n) arithmetic operations, as rz ~ ~. The constant factors do not depend on d. Also, an algorlthm N gwen for integer hnear programmmg. Let p bound the number of bits required to specify the ratmnal numbers defmmg an input constraint or the ob~ective function vector. Let n and d be as before. Then, the algorithm requires expected 0(2d dn + S~dm In n) + dc)’d) ~ in H operations on numbers with O(1~p bits d ~ ~ ~z + ~, where the constant factors do not depend on d or p. The expectations are with respect to the random choices made by the algorithms, and the bounds hold for any gwen input. The techmque can be extended to other convex programming problems. For example, m algorlthm for finding the smallest sphere enclosing a set of /z points m Ed has the same t]me bound
On LinearTime Deterministic Algorithms for Optimization Problems in Fixed Dimension
, 1992
"... We show that with recently developed derandomization techniques, one can convert Clarkson's randomized algorithm for linear programming in fixed dimension into a lineartime deterministic one. The constant of proportionality is d O(d) , which is better than for previously known such algorithms. ..."
Abstract

Cited by 97 (10 self)
 Add to MetaCart
We show that with recently developed derandomization techniques, one can convert Clarkson's randomized algorithm for linear programming in fixed dimension into a lineartime deterministic one. The constant of proportionality is d O(d) , which is better than for previously known such algorithms. We show that the algorithm works in a fairly general abstract setting, which allows us to solve various other problems (such as finding the maximum volume ellipsoid inscribed into the intersection of n halfspaces) in linear time.
A deterministic subexponential algorithm for solving parity games
 SODA
, 2006
"... The existence of polynomial time algorithms for the solution of parity games is a major open problem. The fastest known algorithms for the problem are randomized algorithms that run in subexponential time. These algorithms are all ultimately based on the randomized subexponential simplex algorithms ..."
Abstract

Cited by 81 (3 self)
 Add to MetaCart
The existence of polynomial time algorithms for the solution of parity games is a major open problem. The fastest known algorithms for the problem are randomized algorithms that run in subexponential time. These algorithms are all ultimately based on the randomized subexponential simplex algorithms of Kalai and of Matousek, Sharir and Welzl. Randomness seems to play an essential role in these algorithms. We use a completely different, and elementary, approach to obtain a deterministic subexponential algorithm for the solution of parity games. The new algorithm, like the existing randomized subexponential algorithms, uses only polynomial space, and it is almost as fast as the randomized subexponential algorithms mentioned above.
Vertical decomposition of shallow levels in 3dimensional arrangements and its applications
 SIAM J. Comput
"... Let F be a collection of n bivariate algebraic functions of constant maximum degree. We show that the combinatorial complexity of the vertical decomposition of the ≤klevel of the arrangement A(F) is O(k 3+ε ψ(n/k)), for any ε> 0, where ψ(r) is the maximum complexity of the lower envelope of a su ..."
Abstract

Cited by 65 (14 self)
 Add to MetaCart
Let F be a collection of n bivariate algebraic functions of constant maximum degree. We show that the combinatorial complexity of the vertical decomposition of the ≤klevel of the arrangement A(F) is O(k 3+ε ψ(n/k)), for any ε> 0, where ψ(r) is the maximum complexity of the lower envelope of a subset of at most r functions of F. This bound is nearly optimal in the worst case, and implies the existence of shallow cuttings, in the sense of [52], of small size in arrangements of bivariate algebraic functions. We also present numerous applications of these results, including: (i) data structures for several generalized threedimensional rangesearching problems; (ii) dynamic data structures for planar nearest and farthestneighbor searching under various fairly general distance functions; (iii) an improved (nearquadratic) algorithm for minimumweight bipartite Euclidean matching in the plane; and (iv) efficient algorithms for certain geometric optimization problems in static and dynamic settings.
Backwards Analysis of Randomized Geometric Algorithms
 Trends in Discrete and Computational Geometry, volume 10 of Algorithms and Combinatorics
, 1992
"... The theme of this paper is a rather simple method that has proved very potent in the analysis of the expected performance of various randomized algorithms and data structures in computational geometry. The method can be described as "analyze a randomized algorithm as if it were running backward ..."
Abstract

Cited by 64 (0 self)
 Add to MetaCart
(Show Context)
The theme of this paper is a rather simple method that has proved very potent in the analysis of the expected performance of various randomized algorithms and data structures in computational geometry. The method can be described as "analyze a randomized algorithm as if it were running backwards in time, from output to input." We apply this type of analysis to a variety of algorithms, old and new, and obtain solutions with optimal or near optimal expected performance for a plethora of problems in computational geometry, such as computing Delaunay triangulations of convex polygons, computing convex hulls of point sets in the plane or in higher dimensions, sorting, intersecting line segments, linear programming with a fixed number of variables, and others. 1 Introduction The curious phenomenon that randomness can be used profitably in the solution of computational tasks has attracted a lot of attention from researchers in recent years. The approach has proved useful in such diverse area...
Local OptimizationBased Simplicial Mesh Untangling And Improvement
 International Journal of Numerical Methods in Engineering
"... . We present an optimizationbased approach for mesh untangling that maximizes the minimum area or volume of simplicial elements in a local submesh. These functions are linear with respect to the free vertex position; thus the problem can be formulated as a linear program that is solved by using the ..."
Abstract

Cited by 62 (7 self)
 Add to MetaCart
. We present an optimizationbased approach for mesh untangling that maximizes the minimum area or volume of simplicial elements in a local submesh. These functions are linear with respect to the free vertex position; thus the problem can be formulated as a linear program that is solved by using the computationally inexpensive simplex method. We prove that the function level sets are convex regardless of the position of the free vertex, and hence the local subproblem is guaranteed to converge. Maximizing the minimum area or volume of mesh elements, although wellsuited for mesh untangling, is not ideal for mesh improvement, and its use often results in poor quality meshes. We therefore combine the mesh untangling technique with optimizationbased mesh improvement techniques and expand previous results to show that a commonly used twodimensional mesh quality criterion can be guaranteed to converge when starting with a valid mesh. Typical results showing the effectiveness of the combine...
A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games
 DISCRETE APPLIED MATHEMATICS
, 2004
"... We suggest the first strongly subexponential and purely combinatorial algorithm for solving the mean payoff games problem. It is based on iteratively improving the longest shortest distances to a sink in a possibly cyclic directed graph. We identify a new “controlled” version of the shortest paths p ..."
Abstract

Cited by 59 (4 self)
 Add to MetaCart
We suggest the first strongly subexponential and purely combinatorial algorithm for solving the mean payoff games problem. It is based on iteratively improving the longest shortest distances to a sink in a possibly cyclic directed graph. We identify a new “controlled” version of the shortest paths problem. By selecting exactly one outgoing edge in each of the controlled vertices we want to make the shortest distances from all vertices to the unique sink as long as possible. Under reasonable assumptions the problem belongs to the complexity class NP∩coNP. Mean payoff games are easily reducible to this problem. We suggest an algorithm for computing longest shortest paths. Player Max selects a strategy (one edge in each controlled vertex) and player Min responds by evaluating shortest paths to the sink in the remaining graph. Then Max locally changes choices in controlled vertices looking at attractive switches that seem to increase shortest paths lengths (under the current evaluation). We show that this is a monotonic strategy improvement, and every locally optimal strategy is globally optimal. This allows us to construct a randomized algorithm of complexity min(poly · W, 2 O( √ n log n)), which is simultaneously pseudopolynomial (W is the maximal absolute edge weight) and subexponential in the number of vertices n. All previous algorithms for mean payoff games were either exponential or pseudopolynomial (which is purely exponential for exponentially large edge weights).
A subexponential algorithm for abstract optimization problems
 SIAM J. Comput
, 1995
"... An Abstract Optimization Problem (AOP) is a triple (H, <, Φ) where H is a finite set, < a total order on 2 H and Φ an oracle that, for given F ⊆ G ⊆ H, either reports that F = min<{F ′  F ′ ⊆ G} or returns a set F ′ ⊆ G with F ′ < F. To solve the problem means to find the minimum set ..."
Abstract

Cited by 48 (4 self)
 Add to MetaCart
(Show Context)
An Abstract Optimization Problem (AOP) is a triple (H, <, Φ) where H is a finite set, < a total order on 2 H and Φ an oracle that, for given F ⊆ G ⊆ H, either reports that F = min<{F ′  F ′ ⊆ G} or returns a set F ′ ⊆ G with F ′ < F. To solve the problem means to find the minimum set in H. We present a randomized algorithm that solves any AOP with an expected number of at most e 2 √ n+O ( 4 √ n ln n) oracle calls, n = H. In contrast, any deterministic algorithm needs to make 2 n − 1 oracle calls in the worst case. The algorithm is applied to the problem of finding the distance between two nvertex (or nfacet) convex polyhedra in dspace, and to the computation of the smallest ball containing n points in dspace; for both problems we give the first subexponential bounds in the arithmetic model of computation.
Efficient PiecewiseLinear Function Approximation Using the Uniform Metric
 Discrete & Computational Geometry
, 1994
"... We give an O(n log n)time method for finding a best klink piecewiselinear function approximating an npoint planar data set using the wellknown uniform metric to measure the error, ffl 0, of the approximation. Our method is based upon new characterizations of such functions, which we exploit to ..."
Abstract

Cited by 42 (1 self)
 Add to MetaCart
(Show Context)
We give an O(n log n)time method for finding a best klink piecewiselinear function approximating an npoint planar data set using the wellknown uniform metric to measure the error, ffl 0, of the approximation. Our method is based upon new characterizations of such functions, which we exploit to design an efficient algorithm using a plane sweep in "ffl space" followed by several applications of the parametric searching technique. The previous best running time for this problem was O(n 2 ). 1 Introduction Approximating a set S = f(x 1 ; y 1 ); (x 2 ; y 2 ); : : : ; (x n ; y n )g of points in the plane by a function is a classic problem in applied mathematics. The general goals in this area of research are to find a function F belonging to a class of functions F such that each F 2 F is simple to describe, represent, and compute and such that the chosen F approximates S well. For example, one may desire that F be the class of linear or piecewiselinear functions, and, for any parti...