Results 1 
4 of
4
Folding and Unfolding in Computational Geometry
"... Three open problems on folding/unfolding are discussed: (1) Can every convex polyhedron be cut along edges and unfolded at to a single nonoverlapping piece? (2) Given gluing instructions for a polygon, construct the unique 3D convex polyhedron to which itfolds. (3) Can every planar polygonal chain ..."
Abstract

Cited by 54 (4 self)
 Add to MetaCart
Three open problems on folding/unfolding are discussed: (1) Can every convex polyhedron be cut along edges and unfolded at to a single nonoverlapping piece? (2) Given gluing instructions for a polygon, construct the unique 3D convex polyhedron to which itfolds. (3) Can every planar polygonal chain be straightened?
Ununfoldable polyhedra with convex faces
 COMPUT. GEOM. THEORY APPL
, 2002
"... Unfolding a convex polyhedron into a simple planar polygon is a wellstudied problem. In this paper, we study the limits of unfoldability by studying nonconvex polyhedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex fa ..."
Abstract

Cited by 26 (11 self)
 Add to MetaCart
Unfolding a convex polyhedron into a simple planar polygon is a wellstudied problem. In this paper, we study the limits of unfoldability by studying nonconvex polyhedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex faces and one with 36 triangular faces, that cannot be unfolded by cutting along edges. We further show that such a polyhedron can indeed be unfolded if cuts are allowed to cross faces. Finally, we prove that “open” polyhedra with triangular faces may not be unfoldable no matter how they are cut.
Reconfigurations of polygonal structures
, 2005
"... This thesis contains new results on the subject of polygonal structure reconfiguration. Specifically, the types of structures considered here are polygons, polygonal chains, triangulations, and polyhedral surfaces. A sequence of vertices (points), successively joined by straight edges, is a polygona ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
This thesis contains new results on the subject of polygonal structure reconfiguration. Specifically, the types of structures considered here are polygons, polygonal chains, triangulations, and polyhedral surfaces. A sequence of vertices (points), successively joined by straight edges, is a polygonal chain. If the sequence is cyclic, then the object is a polygon. A planar triangulation is a set of vertices with a maximal number of noncrossing straight edges joining them. A polyhedral surface is a threedimensional structure consisting of flat polygonal faces that are joined by common edges. For each of these structures there exist several methods of reconfiguration. Any such method must provide a welldefined way of transforming one instance of a structure to any other. Several types of reconfigurations are reviewed in the introduction, which is followed by new results. We begin with efficient algorithms for comparing monotone chains. Next, we prove that flat chains with unitlength edges and angles within a wide range always admit reconfigurations, under the dihedral model of motion. In this model, angles and edge lengths are preserved. For the universal