Results 1 
5 of
5
A computational approach to pocklington certificates in type theory
 In Proc. of the 8th Int. Symp. on Functional and Logic Programming, volume 3945 of LNCS
, 2006
"... Abstract. Pocklington certificates are known to provide short proofs of primality. We show how to perform this in the framework of formal, mechanically checked, proofs. We present an encoding of certificates for the proof system Coq which yields radically improved performances by relying heavily on ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
Abstract. Pocklington certificates are known to provide short proofs of primality. We show how to perform this in the framework of formal, mechanically checked, proofs. We present an encoding of certificates for the proof system Coq which yields radically improved performances by relying heavily on computations inside and outside of the system (twolevel approach). 1 Formal Computational Proofs 1.1 Machines and the Quest for Correctness It is generally considered that modern mathematical logic was born towards the end of 19 th century, with the work of logicians like Frege, Peano, Russell or Zermelo, which lead to the precise definition of the notion of logical deduction and to formalisms like arithmetic, set theory or early type theory. From then on, a mathematical proof could be understood as a mathematical object itself, whose correction obeys some welldefined syntactical rules. In most formalisms, a formal proof is viewed as some treestructure; in natural deduction for instance, given to formal proofs σA and σB respectively of propositions A and B, these can be combined in order to build a proof of A ∧ B: σA σB ⊢ A ⊢ B ⊢ A ∧ B To sum things up, the logical point of view is that a mathematical statement holds in a given formalism if there exists a formal proof of this statement which follows the syntactical rules of the formalism. A traditional mathematical text can then be understood as an informal description of the formal proof. Things changed in the 1960ties, when N.G. de Bruijn’s team started to use computers to actually build formal proofs and verify their correctness. Using the fact that datastructures like formal proofs are very naturally represented in a computer’s memory, they delegated the proofverification work to the machine; their software Automath is considered as the first proofsystem and is the common
Verification of the MillerRabin Probabilistic Primality Test
, 2003
"... Using the HOL theorem prover, we apply our formalization of probability theory to specify and verify the MillerRabin probabilistic primality test. The version of the test commonly found in algorithm textbooks implicitly accepts probabilistic termination, but our own verified implementation satisfie ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
Using the HOL theorem prover, we apply our formalization of probability theory to specify and verify the MillerRabin probabilistic primality test. The version of the test commonly found in algorithm textbooks implicitly accepts probabilistic termination, but our own verified implementation satisfies the stronger property of guaranteed termination. Completing the proof of correctness requires a significant body of group theory and computational number theory to be formalized in the theorem prover. Once verified, the primality test can either be executed in the logic (using rewriting) and used to prove the compositeness of numbers, or manually extracted to Standard ML and used to find highly probable primes.
Certifying solutions to permutation group problems
 In F. Baader, ed, CADE19, LNAI 2741
, 2003
"... Abstract. We describe the integration of permutation group algorithms with proof planning. We consider eight basic questions arising in computational permutation group theory, for which our code provides both answers and a set of certificates enabling a user, or an intelligent software system, to pr ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
Abstract. We describe the integration of permutation group algorithms with proof planning. We consider eight basic questions arising in computational permutation group theory, for which our code provides both answers and a set of certificates enabling a user, or an intelligent software system, to provide a full proof of correctness of the answer. To guarantee correctness we use proof planning techniques, which construct proofs in a humanoriented reasoning style. This gives the human mathematician the necessary insight into the computed solution, as well as making it feasible to check the solution for relatively large groups. 1
Computerassisted proofs
 Proc. IEEE SCAN
, 2006
"... Abstract. This paper discusses the problem what makes a computerassisted proof trustworthy, the quest for an algorithmic support system for computerassisted proof, relations to global optimization, an analysis of some recent proofs, and some current challenges which appear to be amenable to a compu ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract. This paper discusses the problem what makes a computerassisted proof trustworthy, the quest for an algorithmic support system for computerassisted proof, relations to global optimization, an analysis of some recent proofs, and some current challenges which appear to be amenable to a computerassisted treatment. 1