Results 1 
1 of
1
Using Sparsification for Parametric Minimum Spanning Tree Problems
 Nordic J. Computing
, 1996
"... Two applications of sparsification to parametric computing are given. The first is a fast algorithm for enumerating all distinct minimum spanning trees in a graph whose edge weights vary linearly with a parameter. The second is an asymptotically optimal algorithm for the minimum ratio spanning t ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
Two applications of sparsification to parametric computing are given. The first is a fast algorithm for enumerating all distinct minimum spanning trees in a graph whose edge weights vary linearly with a parameter. The second is an asymptotically optimal algorithm for the minimum ratio spanning tree problem, as well as other search problems, on dense graphs. 1 Introduction In the parametric minimum spanning tree problem, one is given an nnode, medge undirected graph G where each edge e has a linear weight function w e (#)=a e +#b e . Let Z(#) denote the weight of the minimum spanning tree relative to the weights w e (#). It can be shown that Z(#) is a piecewise linear concave function of # [Gus80]; the points at which the slope of Z changes are called breakpoints. We shall present two results regarding parametric minimum spanning trees. First, we show that Z(#) can be constructed in O(min{nm log n, TMST (2n, n) # Department of Computer Science, Iowa State University, Ames, IA...