Results 1  10
of
67
Spanning Trees and Spanners
, 1996
"... We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and lowdilation graphs. 1 Introduction This survey covers topics in geometric network design theory. The problem is easy to state: connect a collection of sites by a "good" network. ..."
Abstract

Cited by 143 (2 self)
 Add to MetaCart
We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and lowdilation graphs. 1 Introduction This survey covers topics in geometric network design theory. The problem is easy to state: connect a collection of sites by a "good" network. For instance, one may wish to connect components of a VLSI circuit by networks of wires, in a way that uses little surface area on the chip, draws little power, and propagates signals quickly. Similar problems come up in other applications such as telecommunications, road network design, and medical imaging [1]. One network design problem, the Traveling Salesman problem, is sufficiently important to have whole books devoted to it [79]. Problems involving some form of geometric minimum or maximum spanning tree also arise in the solution of other geometric problems such as clustering [12], mesh generation [56], and robot motion planning [93]. One can vary the network design problem in many w...
A Randomized LinearTime Algorithm to Find Minimum Spanning Trees
, 1994
"... We present a randomized lineartime algorithm to find a minimum spanning tree in a connected graph with edge weights. The algorithm uses random sampling in combination with a recently discovered lineartime algorithm for verifying a minimum spanning tree. Our computational model is a unitcost ra ..."
Abstract

Cited by 115 (7 self)
 Add to MetaCart
We present a randomized lineartime algorithm to find a minimum spanning tree in a connected graph with edge weights. The algorithm uses random sampling in combination with a recently discovered lineartime algorithm for verifying a minimum spanning tree. Our computational model is a unitcost randomaccess machine with the restriction that the only operations allowed on edge weights are binary comparisons.
Efficient Collective Communication in Distributed Heterogeneous Systems
 Journal of Parallel and Distributed Computing
, 1999
"... The Information Power Grid (IPG) is emerging as an infrastructure that will enable distributed applications – such as video conferencing and distributed interactive simulation – to seamlessly integrate collections of heterogeneous workstations, multiprocessors, and mobile nodes, over heterogeneous w ..."
Abstract

Cited by 81 (2 self)
 Add to MetaCart
The Information Power Grid (IPG) is emerging as an infrastructure that will enable distributed applications – such as video conferencing and distributed interactive simulation – to seamlessly integrate collections of heterogeneous workstations, multiprocessors, and mobile nodes, over heterogeneous widearea networks. This paper introduces a framework for developing efficient collective communication schedules in such systems. Our framework consists of analytical models of the heterogeneous system, scheduling algorithms for the collective communication pattern, and performance evaluation mechanisms. We show that previous models, which considered node heterogeneity but ignored network heterogeneity, can lead to solutions which are worse than the optimal by an unbounded factor. We then introduce an enhanced communication model, and develop three heuristic algorithms for the broadcast and multicast patterns. The completion time of the schedule is chosen as the performance metric. The heuristic algorithms are FEF (Fastest Edge First), ECEF (Earliest Completing Edge First), and ECEF with lookahead. For small system sizes, we find the optimal solution using exhaustive search. Our simulationexperiments indicate that the performance of our heuristic algorithms is close to optimal. For performance evaluation of larger systems, we have also developed a simple lower bound on the completion time. Our heuristic algorithms achieve significant performance improvements over previous approaches. 1.
Towards Compressing Web Graphs
 In Proc. of the IEEE Data Compression Conference (DCC
, 2000
"... In this paper, we consider the problem of compressing graphs of the link structure of the World Wide Web. We provide efficient algorithms for such compression that are motivated by recently proposed random graph models for describing the Web. ..."
Abstract

Cited by 80 (1 self)
 Add to MetaCart
In this paper, we consider the problem of compressing graphs of the link structure of the World Wide Web. We provide efficient algorithms for such compression that are motivated by recently proposed random graph models for describing the Web.
Tree spanners
 SIAM J. Discrete Math
, 1995
"... A tree tspanner T of a graph G is a spanning tree in which the distance between every pair of vertices is at most t times their distance in G. This notion is motivated by applications in communication networks, distributed systems, and network design. This paper studies graph theoretic, algorithmic ..."
Abstract

Cited by 58 (1 self)
 Add to MetaCart
A tree tspanner T of a graph G is a spanning tree in which the distance between every pair of vertices is at most t times their distance in G. This notion is motivated by applications in communication networks, distributed systems, and network design. This paper studies graph theoretic, algorithmic and complexity issues about tree spanners. It is shown that a tree 1spanner, if it exists, in a weighted graph with m edges and n vertices is a minimum spanning tree and can be found in O(m log β(m, n)) time, where β(m, n) = min{i  log (i) n ≤ m/n}. On the other hand, for any fixed t> 1, the problem of determining the existence of a tree tspanner in a weighted graph is proven to be NPcomplete. For unweighted graphs, it is shown that constructing a tree 2spanner takes linear time, whereas determining the existence of a tree tspanner is NPcomplete for any fixed t ≥ 4. A theorem which captures the structure of tree 2spanners is presented for unweighted graphs. For digraphs, an O((m+n)α(m, n)) algorithm is provided for
Verification and Sensitivity Analysis Of Minimum Spanning Trees In Linear Time
 SIAM J. Comput
, 1992
"... . Koml'os has devised a way to use a linear number of binary comparisons to test whether a given spanning tree of a graph with edge costs is a minimum spanning tree. The total computational work required by his method is much larger than linear, however. We describe a lineartime algorithm for verif ..."
Abstract

Cited by 54 (2 self)
 Add to MetaCart
. Koml'os has devised a way to use a linear number of binary comparisons to test whether a given spanning tree of a graph with edge costs is a minimum spanning tree. The total computational work required by his method is much larger than linear, however. We describe a lineartime algorithm for verifying a minimum spanning tree. Our algorithm combines the result of Koml'os with a preprocessing and table lookup method for small subproblems and with a previously known almostlineartime algorithm. Additionally, we present an optimal deterministic algorithm and a lineartime randomized algorithm for sensitivity analysis of minimum spanning trees. 1. Introduction. Suppose we wish to solve some problem for which we know in advance the size of the input data, using an algorithm from some welldefined class of algorithms. For example, consider sorting n numbers, when n is fixed in advance, using a binary comparison tree. Given a sufficient amount of preprocessing time and storage space, we ca...
An Efficient Approximation Algorithm for the Survivable Network Design Problem
 IN PROCEEDINGS OF THE THIRD MPS CONFERENCE ON INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION
, 1993
"... The survivable network design problem is to construct a minimumcost subgraph satisfying certain given edgeconnectivity requirements. The first polynomialtime approximation algorithm was given by Williamson et al. [20]. This paper gives an improved version that is more efficient. Consider a graph ..."
Abstract

Cited by 50 (7 self)
 Add to MetaCart
The survivable network design problem is to construct a minimumcost subgraph satisfying certain given edgeconnectivity requirements. The first polynomialtime approximation algorithm was given by Williamson et al. [20]. This paper gives an improved version that is more efficient. Consider a graph
Proximity Problems on Moving Points
 In Proc. 13th Annu. ACM Sympos. Comput. Geom
, 1997
"... A kinetic data structure for the maintenance of a multidimensional range search tree is introduced. This structure is used as a building block to obtain kinetic data structures for two classical geometric proximity problems in arbitrary dimensions: the first structure maintains the closest pair o ..."
Abstract

Cited by 50 (15 self)
 Add to MetaCart
A kinetic data structure for the maintenance of a multidimensional range search tree is introduced. This structure is used as a building block to obtain kinetic data structures for two classical geometric proximity problems in arbitrary dimensions: the first structure maintains the closest pair of a set of continuously moving points, and is provably e#cient. The second structure maintains a spanning tree of the moving points whose cost remains within some prescribed factor of the minimum spanning tree. The method for maintaining the closest pair of points can be extended to the maintenance of closest pair of other distance functions which allows us to maintain the closest pair of a set of moving objects with similar sizes and of a set of points on a smooth manifold.
An optimal minimum spanning tree algorithm
 J. ACM
, 2000
"... Abstract. We establish that the algorithmic complexity of the minimum spanning tree problem is equal to its decisiontree complexity. Specifically, we present a deterministic algorithm to find a minimum spanning tree of a graph with n vertices and m edges that runs in time O(T ∗ (m, n)) where T ∗ is ..."
Abstract

Cited by 46 (10 self)
 Add to MetaCart
Abstract. We establish that the algorithmic complexity of the minimum spanning tree problem is equal to its decisiontree complexity. Specifically, we present a deterministic algorithm to find a minimum spanning tree of a graph with n vertices and m edges that runs in time O(T ∗ (m, n)) where T ∗ is the minimum number of edgeweight comparisons needed to determine the solution. The algorithm is quite simple and can be implemented on a pointer machine. Although our time bound is optimal, the exact function describing it is not known at present. The current best bounds known for T ∗ are T ∗ (m, n) = �(m) and T ∗ (m, n) = O(m · α(m, n)), where α is a certain natural inverse of Ackermann’s function. Even under the assumption that T ∗ is superlinear, we show that if the input graph is selected from Gn,m, our algorithm runs in linear time with high probability, regardless of n, m, or the permutation of edge weights. The analysis uses a new martingale for Gn,m similar to the edgeexposure martingale for Gn,p.
Efficiently Answering Reachability Queries on Very Large Directed Graphs
"... Efficiently processing queries against very large graphs is an important research topic largely driven by emerging real world applications, as diverse as XML databases, GIS, web mining, social network analysis, ontologies, and bioinformatics. In particular, graph reachability has attracted a lot of ..."
Abstract

Cited by 22 (3 self)
 Add to MetaCart
Efficiently processing queries against very large graphs is an important research topic largely driven by emerging real world applications, as diverse as XML databases, GIS, web mining, social network analysis, ontologies, and bioinformatics. In particular, graph reachability has attracted a lot of research attention as reachability queries are not only common on graph databases, but they also serve as fundamental operations for many other graph queries. The main idea behind answering reachability queries in graphs is to build indices based on reachability labels. Essentially, each vertex in the graph is assigned with certain labels such that the reachability between any two vertices can be determined by their labels. Several approaches have been proposed for building these reachability labels; among them are interval labeling (tree cover) and 2hop labeling. However, due to the large number of vertices in many real world graphs (some graphs can easily contain millions of vertices), the computational cost and (index) size of the labels using existing methods would prove too expensive to be practical. In this paper, we introduce a novel graph structure, referred to as pathtree, to help labeling very large graphs. The pathtree cover is a spanning subgraph of G in a tree shape. We demonstrate both analytically and empirically the effectiveness of our new approaches.