Results 11  20
of
114
Variations on Algebra: monadicity and generalisations of equational theories
 Formal Aspects of Computing
, 2001
"... this paper the author was partially supported by an SERC/EPSRC Advanced Research Fellowship, EPSRC Research grant GR/L54639, and EU Working Group APPSEM ..."
Abstract

Cited by 26 (0 self)
 Add to MetaCart
this paper the author was partially supported by an SERC/EPSRC Advanced Research Fellowship, EPSRC Research grant GR/L54639, and EU Working Group APPSEM
Generalized Centers of Braided and Sylleptic Monoidal 2Categories
, 1997
"... Recent developments in higherdimensional algebra due to Kapranov and Voevodsky, Day and Street, and Baez and Neuchl include definitions of braided, sylleptic and symmetric monoidal 2categories, and a center construction for monoidal 2categories which gives a braided monoidal 2category. I give ge ..."
Abstract

Cited by 25 (3 self)
 Add to MetaCart
Recent developments in higherdimensional algebra due to Kapranov and Voevodsky, Day and Street, and Baez and Neuchl include definitions of braided, sylleptic and symmetric monoidal 2categories, and a center construction for monoidal 2categories which gives a braided monoidal 2category. I give generalized center constructions for braided and sylleptic monoidal 2categories which give sylleptic and symmetric monoidal 2categories respectively, and I correct some errors in the original center construction for monoidal 2categories. 1 Introduction The initial motivation for the study of braided monoidal categories was twofold: from homotopy theory, where braided monoidal categories of a particular kind arise as algebraic 3types of arcconnected, simply connected spaces, and from higherdimensional category theory, where braided monoidal categories arise as one object monoidal bicategories [16]. These motivations have subsequently been brought together by the definition of tricategori...
Normalization and the Yoneda Embedding
"... this paper we describe a new, categorical approach to normalization in typed  ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
this paper we describe a new, categorical approach to normalization in typed 
A Cellular Nerve for Higher Categories
, 2002
"... ... categories. The associated cellular nerve of an ocategory extends the wellknown simplicial nerve of a small category. Cellular sets (like simplicial sets) carry a closed model structure in Quillen’s sense with weak equivalences induced by a geometric realisation functor. More generally, there ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
... categories. The associated cellular nerve of an ocategory extends the wellknown simplicial nerve of a small category. Cellular sets (like simplicial sets) carry a closed model structure in Quillen’s sense with weak equivalences induced by a geometric realisation functor. More generally, there exists a dense subcategory YA of the category of Aalgebras for each ooperad A in Batanin’s sense. Whenever A is contractible, the resulting homotopy category of Aalgebras (i.e. weak ocategories) is
Pseudo limits, biadjoints, and pseudo algebras: categorical foundations of conformal field theory
 Mem. Amer. Math. Soc
"... The purpose of this paper is to work out the categorical basis for the foundations of Conformal Field Theory. The definition of Conformal Field Theory was outlined in Segal [45] and recently given in [24] and [25]. Concepts of 2category theory, such as versions of algebra, limit, colimit, and adjun ..."
Abstract

Cited by 20 (8 self)
 Add to MetaCart
The purpose of this paper is to work out the categorical basis for the foundations of Conformal Field Theory. The definition of Conformal Field Theory was outlined in Segal [45] and recently given in [24] and [25]. Concepts of 2category theory, such as versions of algebra, limit, colimit, and adjunction, are necessary for this
Categorical and combinatorial aspects of descent theory, [arXiv:math/0303175
"... There is a construction which lies at the heart of descent theory. The combinatorial aspects of this paper concern the description of the construction in all dimensions. The description is achieved precisely for strict ncategories and outlined for weak ncategories. The categorical aspects concern ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
There is a construction which lies at the heart of descent theory. The combinatorial aspects of this paper concern the description of the construction in all dimensions. The description is achieved precisely for strict ncategories and outlined for weak ncategories. The categorical aspects concern the development of descent theory in low dimensions in order to provide a template for a theory in all dimensions. The theory involves nonabelian cohomology, stacks, torsors, homotopy, and higherdimensional categories. Many of the ideas are scattered through the literature or are folklore; a few are new. Section Headings
Extracting a Proof of Coherence for Monoidal Categories from a Proof of Normalization for Monoids
 In TYPES
, 1995
"... . This paper studies the problem of coherence in category theory from a typetheoretic viewpoint. We first show how a CurryHoward interpretation of a formal proof of normalization for monoids almost directly yields a coherence proof for monoidal categories. Then we formalize this coherence proof in ..."
Abstract

Cited by 17 (3 self)
 Add to MetaCart
. This paper studies the problem of coherence in category theory from a typetheoretic viewpoint. We first show how a CurryHoward interpretation of a formal proof of normalization for monoids almost directly yields a coherence proof for monoidal categories. Then we formalize this coherence proof in intensional intuitionistic type theory and show how it relies on explicit reasoning about proof objects for intensional equality. This formalization has been checked in the proof assistant ALF. 1 Introduction Mac Lane [18, pp.161165] proved a coherence theorem for monoidal categories. A basic ingredient in his proof is the normalization of object expressions. But it is only one ingredient and several others are needed too. Here we show that almost a whole proof of this coherence theorem is hidden in a CurryHoward interpretation of a proof of normalization for monoids. The second point of the paper is to contribute to the development of constructive category theory in the sense of Huet a...
Enriched Lawvere Theories
"... We define the notion of enriched Lawvere theory, for enrichment over a monoidal biclosed category V that is locally finitely presentable as a closed category. We prove that the category of enriched Lawvere theories is equivalent to the category of finitary monads on V. Morever, the Vcategory of mod ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
We define the notion of enriched Lawvere theory, for enrichment over a monoidal biclosed category V that is locally finitely presentable as a closed category. We prove that the category of enriched Lawvere theories is equivalent to the category of finitary monads on V. Morever, the Vcategory of models of a Lawvere Vtheory is equivalent to the Vcategory of algebras for the corresponding Vmonad. This all extends routinely to local presentability with respect to any regular cardinal. We finally consider the special case where V is Cat, and explain how the correspondence extends to pseudo maps of algebras.
Doctrines Whose Structure Forms A Fully Faithful Adjoint String
 Theory Appl. Categ
, 1997
"... . We pursue the definition of a KZdoctrine in terms of a fully faithful adjoint string Dd a m a dD. We give the definition in any Graycategory. The concept of algebra is given as an adjunction with invertible counit. We show that these doctrines are instances of more general pseudomonads. The alge ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
. We pursue the definition of a KZdoctrine in terms of a fully faithful adjoint string Dd a m a dD. We give the definition in any Graycategory. The concept of algebra is given as an adjunction with invertible counit. We show that these doctrines are instances of more general pseudomonads. The algebras for a pseudomonad are defined in more familiar terms and shown to be the same as the ones defined as adjunctions when we start with a KZdoctrine. 1. Introduction Free cocompletions of categories under suitable classes of colimits were the motivating examples for the definition of KZdoctrines. We introduce in this paper a notstrict version of such doctrines defined via a fully faithful adjoint string. Thus, a nonstrict KZdoctrine on a 2category K consists of a normal endo homomorphism D : K \Gamma! K, and strong transformations d : 1K \Gamma! D, and m : DD \Gamma! D in such a way that Dd a m a dD forms a fully faithful adjoint string, satisfying one equation involving the unit of...
Finite groups, spherical 2categories, and 4manifold invariants. arXiv:math.QA/9903003
"... In this paper we define a class of statesum invariants of compact closed oriented piecewise linear 4manifolds using finite groups. The definition of these statesums follows from the general abstract construction of 4manifold invariants using spherical 2categories, as we defined in [32], althou ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
In this paper we define a class of statesum invariants of compact closed oriented piecewise linear 4manifolds using finite groups. The definition of these statesums follows from the general abstract construction of 4manifold invariants using spherical 2categories, as we defined in [32], although it requires a slight generalization of that construction. We show that the statesum invariants of Birmingham and Rakowski [11, 12, 13], who studied DijkgraafWitten type invariants in dimension 4, are special examples of the general construction that we present in this paper. They showed that their invariants are nontrivial by some explicit computations, so our construction includes interesting examples already. Finally, we indicate how our construction is related to homotopy 3types. This connection suggests that there are many more interesting examples of our construction to be found in the work on homotopy 3types, such as [15], for example. 1 1